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Abstract

Private transit provision faces two opposing market failures: market power, which leads firms
to set high prices and underprovide quality, and uninternalized network effects that arise
from fragmented service and lack of coordination across routes. Governments address these
distortions through contracts that combine quality targets with route bundling. This paper
studies how these instruments should be designed to maximize welfare. I exploit quasi-
experimental variation from Santiago, Chile’s 2022 contract reform which imposed stricter quality
targets and rebundled routes among private operators. Using high-frequency GPS data for
373 bus routes and an event-study difference-in-differences design, I find that stricter quality
targets improve service regularity by 16 percent and increase ridership by 11 percent. I develop
and estimate a structural model that endogenizes traveler mode and route choices, private
operators’ service attribute decisions, and traffic congestion to evaluate alternative contract
designs. The results show that welfare losses from monopoly pricing exceed coordination gains
from single-operator networks, with optimal market structure involving four to five competing
firms. The findings highlight that effective contract design must reconcile the efficiency gains
from competition with the coordination benefits of network integration.

Keywords: Public Transit. Private Provision. Contracts. Network Effects. JEL: D22, D62, 191, 192, R41, R42

“Dyson School of Applied Economics and Management, Cornell University (Email: min26@cornell.edu.).
I am grateful to my advisors Shanjun Li, Todd Gerarden, Andrew Waxman, and Stuart Rosenthal for
invaluable advice and support, and to Ricardo Daziano, Seba Tamblay, Beia Spiller, and seminar participants
at Cornell University, AERE Summer Conference, ITEA Annual Conference for helpful comments. I gratefully
acknowledge support by the Interdisciplinary Transportation Doctoral Fellowship funded by the Alfred P.
Sloan Foundation. All errors are mine.


https://mnavarrosudy.github.io/files/research/navarro_jmp.pdf
mailto:min26@cornell.edu

1 Introduction

Governments often rely on private firms to deliver public services, with procurement
accounting for roughly 12% of global GDP (Bosio et al., 2022; Wolfram et al., 2023).
Procurement outcomes depend critically on how contracts allocate risks and incentives,
especially when multiple market failures coexist (Lewis and Bajari, 2014). In this sense,
procurement contract design involves a fundamental trade-off: instruments that curb one
source of inefficiency may exacerbate another. This trade-off arises across many sectors,
and is particularly salient in network industries such as energy distribution, broadband,
water utilities, and public transit. In transit markets, economic theory predicts two
coexisting market failures. The first is market power, which leads to inefficient prices
and underprovision of quality by ignoring the environmental benefits of mode shift from
cars to transit (Spence, 1975). The second is uninternalized network effects, whereby firms
coordinate within their own routes but neglect complementarities across routes operated
by other firms (Economides, 1996).

In recent decades, transit agencies have increasingly relied on contractual mechanisms
to regulate service provision, with mixed results (e.g., Paris, Singapore, Hong Kong; see
Figure C.1). Among the many dimensions of contract design, two are central because
they directly target the market failures described above. The first is quality targets, which
discipline firm behavior by imposing minimum service standards. They mitigate the
underprovision that results from market power but raise operating costs and, in turn,
the subsidies or prices needed to sustain service. The second is route bundling, which
determines how many routes are grouped within a single contract. Smaller bundles expand
the pool of potential operators and reduce the price distortions of market power, but they
fragment the network and weaken coordination. Larger bundles preserve coordination
across routes but reduce competition. Each instrument therefore addresses one dimension
of inefficiency while potentially worsening the other. What remains unclear, and is central
for contract design, is how these instruments interact when both market power and
network effects are present.

In this paper, I study how quality targets and route bundling should be designed
in public transit contracts to maximize welfare. I study this question in the context of
Santiago de Chile’s public transit system, Transantiago, one of the first large-scale systems
to adopt contracts regulating private bus service. These contracts group routes into
packages operated by private firms, compensate firms for service provision, and specify
targets on service attributes. Each year, Transantiago pays roughly $900 million to these
private operators to run 373 bus routes that, together with the subway network, serve
approximately 2.6 million trips per day. In late 2022, a large-scale contract reform modified
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percent of the network. This reform provides a unique setting to test how contract design
can address market power and network effects.

I begin by analyzing the market failures in private provision of public transit using a
framework adapted from Barwick et al. (2024a). In the baseline model, a monopolist and
a social planner each choose prices and service attributes. 1 extend this framework by
allowing travelers” willingness to pay on one route to depend on service quality elsewhere
in the network. This captures demand-side network effects.

The conceptual framework highlights two distortions. The first is market power,
which induces firms to charge markups and underprovide quality, given that they do not
internalize the environmental benefits of shifting travelers from cars to transit. The second
is uninternalized network effects, as firms coordinate service within their own routes but
neglect complementarities across routes operated by others. These distortions motivate two
contractual instruments. Quality targets can discipline service provision, but their welfare
effect depends on how penalties are designed: they restore efficiency if they internalize the
value of the environmental benefits, yet they may also raise costs and fares. Route bundling
can mitigate markups by fostering competition, but it fragments the network and weakens
coordination across routes.

The interaction of these instruments is even less clear. Stricter quality targets increase
operating costs, which may amplify the effects of market power if competition is weak.
Conversely, smaller bundles intensify competition but may reduce the effectiveness of
quality targets if coordination breaks down. Theory therefore delivers sharp predictions
about the sources of inefficiency but leaves ambiguous how contract instruments should be
designed jointly. This ambiguity motivates the empirical analysis.

In the empirical analysis, I draw on rich administrative data that directly connect
traveler choices to the service they experience. I combine (i) a representative household
travel survey that records not only precise trip origins and destinations but also travelers’
mode and route choices, (ii) the universe of smart-card fare validations, which reconstructs
complete journeys including transfers, and (iii) GPS signals from every transit vehicle,
emitted every 30 seconds. Together, these sources provide a unique match between demand
and supply: I observe which routes travelers choose and, conditional on that choice, the
exact service attributes they encounter such as fares, travel times, frequency, and regularity
of service.

I use these data to provide descriptive evidence on two central mechanisms behind
the contract reform. First, I study the effect of quality targets on service attribute choices.
Using raw data, I show that firms consistently meet frequency targets but fall short of
regularity targets. This divergence is informative: it indicates that the marginal cost of
improving regularity exceeds the expected penalties, so firms rationally allocate effort

across attributes rather than complying uniformly. To go beyond this descriptive evidence, I



exploit the 2022 contract reform, which introduced stricter quality targets on 40 percent of
routes. This reform functions as a natural experiment in enforcement because it creates
counterfactual regimes within the same market, something rarely observed in public
procurement. Using a difference-in-differences design, I show that stricter quality targets
shift behavior: regularity increases by about 16 percent, consistent with firms reoptimizing
in response to stronger enforcement. Frequency rises by only 2.9 percent and the estimate
is not statistically significant, which aligns with the fact that firms were already meeting
frequency targets. These adjustments reduce waiting times and improve service quality.
Finally, I show that travelers respond to these improvements: ridership rises by 11 percent
on routes subject to stricter quality targets relative to those that were not. Together, these
results provide direct evidence on how contract design affects both firm behavior and
demand.

Second, I examine the effect of network fragmentation on service attributes, focusing
on the second policy change introduced in the 2022 contract reform: the creation of more
route bundles. Bundling determines how many firms operate within a market, and in
turn how fragmented the network is. I use the household travel survey to define markets
as origin destination zone pairs and track daily service attributes over time. I measure
network fragmentation with a standard index of market concentration, the Herfindahl
Hirschman Index (HHI), and relate it to frequency, headway regularity, and wait times.
Three patterns emerge. First, frequency declines with concentration: as HHI rises, firms
deploy fewer buses, consistent with under provision driven by market power. Second,
regularity improves with concentration: the coefficient of variation of headways falls as
HHI rises, consistent with firms better coordinating dispatches when they control all
routes in a market. Third, wait times fall modestly with concentration, indicating that
the coordination effect slightly outweighs the quantity effect. These results show that
bundling routes alters the structure of competition in ways that reduce frequency but
improve regularity, with overall waiting times determined by the balance of market power
and coordination forces.

These findings suggest that quality targets and network fragmentation shape service
provision and traveler responses in meaningful ways. They also highlight trade-offs
that cannot be assessed with reduced-form evidence alone: how operator costs respond
to stricter quality targets or to bundling that alters market structure, how these policy
instruments interact in shaping supply and demand, and what the welfare consequences
are under alternative designs.

I develop and estimate a model of public transportation outsourcing to analyze these
trade-offs. The model has three components. On the demand side, I estimate traveler
preferences from revealed mode and route choices. On the supply side, I estimate operator

cost parameters from service attribute choices using the identifying variation generated
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by the 2022 contract reform. Finally, a road technology component links traffic flows to
equilibrium travel times in the road network.

On the demand side, I estimate travel preference parameters for in-vehicle travel
time, wait time, fares, and transfer penalties using maximum likelihood estimation of
travelers” mode and route choices, following Kreindler et al. (2023). The demand side of
the model captures complementarities across routes and the welfare gains from quality
improvements. On the supply side, I estimate operator cost parameters from firms’
profit-maximizing first-order conditions to identify labor elasticity, quality elasticity, and
economies-of-scale parameters. The supply side of the model captures the trade-offs
firms face in meeting stricter quality targets and the efficiency gains that can arise from
bundling. On the road technology side, I estimate a congestion elasticity parameter using
traffic counts and speed data at 64 locations in the city. The road technology component
reproduces equilibrium travel times in the road network and captures how congestion
responds to traveler and operator choices.

The estimated model aligns closely with the descriptive evidence. On the demand
side, the marginal disutility of waiting is about 1.8 times that of in-vehicle travel, the
implied value of time is near $11 per hour, and there is a sizable transfer penalty. On
the supply side, the estimates reveal sharp asymmetries in adjustment costs: a 10 percent
increase in frequency raises operating costs by roughly 6.4 percent, whereas a 10 percent
improvement in regularity increases costs by about 11.4 percent. Operating costs also fall
by about 2.2 percent when more routes operate from the same depot, indicating modest
economies of scale at the depot level. On the road technology side, the elasticity of travel
time with respect to traffic flows is about 0.12, which is comparable to existing estimates
in the literature (Akbar et al., 2023). The model reproduces key outcomes in the data,
explaining 56 percent of the variation in route-level ridership and 12 percent of the variation
in speeds. These magnitudes rationalize the reduced-form findings: regularity is more
costly to improve than frequency, consistent with firms deviating more on that margin
before the reform. The model therefore provides a disciplined foundation for evaluating
the welfare implications of alternative quality targets and route bundling.

Using these estimates, I first examine how market structure affects welfare in the
absence of regulation. A monopoly sets higher fares and underprovides quality, but coor-
dinates operations across the entire network. Adding more firms introduces competition
on prices but fragments the network, which increases environmental externalities. I find
that consumer surplus rises only modestly and producer surplus falls only gradually as
the number of firms grows. This pattern reflects an important nuance: because the bundles
I simulate isolate firms in nearly disjoint geographic areas, competition does not fully
materialize, and each firm retains local market power. As a result, prices do not decline as

much as theory might predict, and externalities from fragmentation eventually dominate,
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lowering welfare at higher levels of competition.

I then evaluate the performance of quality targets, which represent the main regulatory
tool currently in place. These targets penalize firms for underperforming on service
attributes and can, in theory, push provision closer to the social optimum. In my
simulations, quality targets substantially reduce externalities and improve passenger
experience, but they do not alter firms’ ability to charge prices above cost. The outcome
resembles a set of local monopolies that are disciplined on quality but not on prices,
so welfare improves relative to the unregulated case but remains far from the planner’s
benchmark.

Finally, I consider the role of route bundling, which determines how competition un-
folds. The current bundling design generates local monopolies that limit the effectiveness
of competition, which explains why producer surplus remains high even as more firms
enter. My framework suggests that alternative bundling strategies—by mixing routes
across geographic areas—could enhance competition and reduce local market power.
Importantly, this policy would complement quality targets by addressing different market
failures: bundling would discipline prices, while targets would discipline quality. Together,
they have the potential to bring market outcomes much closer to the social planner’s
benchmark, though the design must balance stronger competition against the risk of further

fragmentation.

Related literature This paper contributes to the growing literature on the design and
evaluation of public transit policies. One line of research has examined settings where
provision is largely public and centralized, focusing on policies such as price, subsidy, and
service-attribute design (Parry and Small, 2009; Wang, 2024), congestion pricing (Barwick
et al., 2024b; Almagro et al., 2022), and transit infrastructure and network design (Tsivanidis,
2025; Kreindler et al., 2023). A second line has studied decentralized private provision,
emphasizing the externalities of unregulated markets, including matching (Conwell, 2023),
safety (Kelley et al., 2024), market segmentation (Mbonu and Eaglin, 2024), and public
entry (Bjorkegren et al., 2025). A smaller but important set of papers investigates regulated
private operators, including work using structural models to study regulatory schemes or
the strategic organization of depots and routes (e.g., Gagnepain and Ivaldi, 2002; Marra
and Oswald, 2023). My paper is complementary to this work: I focus on how contract
design, through explicit instruments such as quality targets and route bundling, reshapes
firms” incentives in ways that matter for service quality, passenger behavior, and overall
welfare, highlighting its importance as a core policy instrument in public transit.

The paper also relates to the broader literature on private participation in the provision
of public services. A large body of work has examined how privatization and outsourcing

affect efficiency, quality, and access in sectors such as water, electricity, and health, with
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evidence ranging from water utilities (Galiani et al., 2005) to hospitals (Duggan, 2000). This
literature highlights the challenges of incomplete contracts and limited monitoring, which
can lead to cost savings at the expense of quality (Hart ef al., 1997; Levin and Tadelis, 2010;
Bajari and Tadelis, 2001). Empirical studies document both the efficiency gains and the risks
of quality shading under private provision, with evidence from procurement in municipal
services (Jerch et al., 2017), water and electricity utilities, and infrastructure (Lewis and
Bajari, 2011, 2014; Bajari et al., 2014). A central theme in this research is the tension
between harnessing competition and safeguarding service quality when performance is
difficult to specify or enforce. My analysis contributes to this debate by leveraging quasi-
experimental variation from a major contract reform in Santiago, where stricter quality
targets and route rebundling were introduced on only 40 percent of routes. This staggered
and partial implementation generates clean policy variation, allowing me to provide direct
evidence on how contractual instruments shape service provision. Together, these findings
highlight the central role of contract design in determining quality outcomes in outsourced
public services.

Finally, this paper builds on the use of structural models to study transportation
industries. Recent work has applied such approaches to analyze spatial equilibrium and
platform competition in taxi and ride-hailing markets (Buchholz, 2022; Frechette et al.,
2019; Castillo, 2025; Rosaia, 2025), search frictions and optimal policy in decentralized
transport markets (Brancaccio et al., 2023), and the role of shipping networks in world
trade (Brancaccio et al., 2020). Other studies have examined network competition and
economies of scope in railroads and airlines (Chen, 2024; Degiovanni and Yang, 2023;
Ciliberto et al., 2021; Yuan and Barwick, 2024), and Al-assisted decision-making in trucking
maintenance (Harris and Yellen, 2024). These studies demonstrate how structural models
can uncover the welfare consequences of regulation and market structure in settings where
firm behavior interacts with infrastructure. My contribution is to extend this framework
to regulated urban bus transit, where contracting, rather than direct pricing, is the central
policy instrument. In particular, I use the model to study the interaction between quality
targets and route rebundling—two instruments that address different aspects of market
power and network effects, but whose joint impact is theoretically ambiguous. The contract
reform generates quasi-experimental variation in quality targets and route rebundling
that reveals how firms adjust frequency and service regularity when incentives shift.
This identifying variation pins down key supply-side elasticities in the cost function,
which determine how firms would reoptimize service attributes under alternative contract
designs. As a result, the model can generate credible counterfactuals that quantify the
welfare implications of contract design in urban bus transit and offer insights for the

regulation of networked service industries more broadly.



2 Theoretical Framework

In this section, I present a theoretical framework for optimal regulation of transit service
provision in the presence of market power, environmental externalities, and network
effects. As a key departure from the literature on transportation regulation under market
power, firms in this model respond to government policies by adjusting both prices and
service attributes of their route networks. This framework enables me to characterize the
welfare implications of two policy instruments: quality targets and route bundling.

The framework involves N differentiated transit routes, indexed by j, each characterized
by a K-element service attribute vector xXj = (x},sz,...,x]K) (e.g., frequency, headway
regularity) and price P;. Route j generates external benefits e;(x;) > 0 due to reductions
in pollution and traffic congestion externalities when travelers shift from more externality-
intensive transportation modes. Both consumer willingness-to-pay B;(x) and the marginal
cost of service provision Cj(x;) depend on service attributes, where x = (x1,...,%n)
captures network effects arising from the interdependence of route choices.

Throughout the theoretical analysis, I assume that consumer demand exhibits additive
separability between price disutility and service attributes: Q;(P,x) = Q; (Pj — Bj(x)) .
following Barwick et al. (2024a). The additive separability makes firms’ choices of prices
and attributes independent and greatly simplifies the model. Most importantly, it enables
me to characterize optimal policy design in the presence of market power and network
externalities, which has not been done in the transit regulation literature. A limitation of
the additivity assumption is that the marginal value of service attributes is the same across
consumers, which rules out the Spence distortion in quality provision.

The theoretical analysis compares the privately and socially optimal outcomes and
discusses the choice of regulatory instruments to rectify market failures in transit
provision. To build intuition, I first analyze the baseline case of a social planner before
examining monopoly provision without regulation, then extending to quality regulation

and competitive bundling mechanisms.



2.1 Social Planner

The social planner chooses prices and service attributes to maximize social welfare that
consists of consumer surplus, producer surplus, and externalities.

N
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Px =1
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The first-order conditions reflect that service attributes are chosen to maximize per-
unit social surplus, Bj(x) — C;(xj) + ¢ - ¢;(x;), while prices reflect the social cost of service
provision, Cj(x}) — ¢ - ¢j(x7). The socially optimal price P eliminates quantity distortions,
while the socially optimal attributes x; internalize both environmental externalities and
network effects across routes.

2.2 Monopoly without Regulation

Consider a monopolist that controls the entire transit network and chooses prices and
service attributes to maximize profit:

Z
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where ¢p, is the price elasticity of demand for route j. The first-order conditions differ
from Equations (1) and (2) in three important ways.

First, the monopolist sets Pj"’ > Pj*, resulting in underprovision of quantity relative to
the social optimum due to markup pricing under downward-sloping demand. Second,
the monopolist does not internalize external benefits ¢ - ¢;(x;), leading to inefficient service
quality choices where routes may be under-served in terms of environmentally beneficial
attributes. Third, while the monopolist controls all routes and thus internalizes network
effects through the term };; aBa ; Qj, it chooses suboptimal attribute levels because it
ignores externalities. Consequently, it does not generate the full social value of network

coordination that would justify higher service levels.

2.3 Monopoly with Quality Regulation

Suppose the government introduces quality targets ¥; for each route j to address externality
distortions. To incentivize compliance, the firm faces penalties when deviating from these
targets:

Pj(x]‘, JZ‘]) =T- sj(x]', f]),

where T > 0 is a penalty strength parameter and s;(-) represents the penalty function. The

regulated monopolist maximizes:

N
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The regulated equilibrium prices P? and service attributes x;
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[Pj] : Pf = Gi(x}) —7-5;(x, %)) _ 1
7 P]-Z Ep.

10



aBi(g.CZ) B 8Cz’(3“?> . M i"‘i aBj(J.CZ>Qj =0
or,  oxl 9x; 7L 0%

Direct effect on route i Network effect

Quality regulation addresses externality distortions but leaves market power intact.
The monopolist continues to set P > Pf, leading to underprovision of quantity relative to
the social optimum, as the penalty function affects profit levels but not marginal pricing

incentives. However, if the marginal penalty equals the marginal externality:

axé ox,

9s:(x;, %:
. Sl(x]'x]) _

forall j, ¢,

then the regulated monopolist chooses efficient service quality levels: xj = x;. Under this
condition, the monopolist also internalizes the full network benefits that a social planner

would, since it controls all routes and quality incentives are properly aligned.

24 Competitive Route Bundling

I now introduce a two-stage mechanism where competition occurs via auctions over
packages of transit routes, followed by decentralized service provision by winning
tirms. This mechanism addresses market power distortions while potentially affecting the
internalization of network effects.

The N transit routes are partitioned into B disjoint packages Ry, C {1,...,N}. In the
tirst stage, firms k € K submit bids Py, representing the per-passenger price they would

charge for operating bundle b. The regulator awards each bundle to the lowest bidder:
k(b) = in Pyp.
(b) = argmin Py,

In the second stage, each winning firm chooses service attributes x; for routes j € R,

to maximize profit, taking prices as given from the auction outcome.

2.4.1 First-Stage Bidding

In the auction stage, firm k chooses bid P for bundle b to maximize expected profit.
Assuming symmetric firms with i.i.d. rival bids following distribution F(-), the probability
of winning with bid P is (1 — F(P))"~!, where n is the number of bidders. Expected profit
is:

max (1—F(P))" 1. mp(P),
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where 71 (P) = Ljcg, (P — C]-(x]?“‘ftw”)> Qj.
The first-order condition for optimal bidding yields:
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This condition balances the marginal profit from raising the bid (left side) against
the increased probability of losing the auction (right side). As competition intensifies (n
increases), the equilibrium bid P, decreases toward marginal cost, addressing the quantity
distortion from market power.

2.4.2 Second-Stage Service Provision

After winning bundle b, firm k chooses service attributes to maximize profit given the

auction-determined price Py:

max 1 [(B = Gla) - QiR ).
N S

The optimal service attributes satisfy:
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Comparing Equation (3) with (2) reveals that competitive bundling internalizes network
effects only within each bundle R;, but not across bundles operated by different firms. The
mechanism eliminates externality distortions only if combined with appropriate quality
regulation, and the efficiency of network effect internalization depends critically on how

routes are grouped into bundles.

2.5 Discussion

My theoretical framework illustrates the distinct roles of quality regulation and competitive
bundling in addressing market failures in transit provision. Quality targets can eliminate
externality distortions and restore efficient network coordination when properly calibrated,
but leave market power intact. Competitive bundling addresses market power through
price competition but may fragment network coordination depending on bundle design.
The optimal regulatory approach depends on the relative importance of these distortions
and the administrative feasibility of different policy instruments, questions I address

empirically in the next sections.
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3 Background and Institutional Setting

My empirical setting is Santiago’s public transit system, Transantiago, administered by
the Directorio de Transporte Piiblico Metropolitano (DTPM), the public agency responsible for
planning, contracting, and monitoring private bus operations. Since its launch in 2007,
Transantiago has delegated operation of its 373 routes, served by a fleet of 6,982 buses, to
private firms through competitively tendered contracts, while the metro network remains
publicly operated. The two modes are fare-integrated, enabling seamless travel across
the system.! In 2022, the system served an average of 2.6 million daily trips on business
days, accounting for about 22 percent of total trips in the metropolitan area (CEDEUS,
2024). The total system budget reached US$1.35 billion (DTPM, 2022), of which US$900
million (67 percent) was allocated to payments to private operators, placing Transantiago
among the ten largest public expenditure programs in Chile, alongside national initiatives
in education, pensions, and housing (DIPRES, 2022). Transantiago is one of the most
mature and extensive examples of contract-based bus regulation worldwide, typifying the
“regulated competition” model now adopted in cities such as Singapore, Paris, and Hong
Kong. In 2022, a large-scale contract reform modified both the stringency of quality targets
and the number of route bundles, affecting over 40 percent of the network and providing
a unique setting to study how contract design can address market power and network
effects.

3.1 Tendering

Unlike fixed-price or cost-plus contracts, DTPM allocates bus service contracts through
a competitive scoring auction that creates ex-ante competition among private operators.
Firms submit bids for contracts that specify bundles of bus routes, each linked to a
designated set of bus depots controlled by DTPM (see Figure 1). Depot proximity facilitates
efficient operations, while capacity constraints limit the feasible combinations of routes that
can be assigned to a given location (see Appendix Figure C.2).

Each bid includes two key decision variables: the per-kilometer price the firm is
willing to accept and the fleet size it proposes to operate the bundle. These economic
components are scored alongside technical criteria—such as the firm’s experience in urban
transit, proposed fleet characteristics, and compliance with formal requirements—using a
transparent scoring rule in which the economic score receives 80-90% of the total weight.
At the time of bidding, firms observe historical ridership, the depot assignment for each
bundle, the regulator-set per-passenger price, and the penalty structure that governs

ITransfers between buses are free, and transfers between buses and the metro involve a small additional
fee.
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quality targets monitoring. These auction-stage choices shape both the firm’s expected
profits and its operational incentives under the contract. In my structural model, I treat the
price and fleet size as the firm’s decision variables at the tendering stage.

3.2 Operations

Beyond the tendering stage, Transantiago’s contract structure creates ongoing incentives
for firms to determine how to operate their assigned routes. Firms earn revenue from two
components: (i) a per-passenger price set by DTPM, multiplied by the number of travelers
they serve, and (ii) a per-kilometer price they bid at the tendering stage, multiplied by the
kilometers they actually operate. To obtain the latter, firms must deploy transit vehicles to
cover the required service, making service frequency a choice variable. Firms also choose
how evenly to space departures, which determines the regularity of headways experienced
by travelers.

Appendix Figure C.3 provides a simple one-hour illustration of these two choice
variables. Both schedules dispatch four buses between 7am and 8am, so frequency is
identical in the two cases. In the first schedule the buses depart at uneven intervals,
which raises headway dispersion and increases the expected wait to 10.4 minutes. In the
second schedule the buses are evenly spaced and produce an expected wait of 7.5 minutes.
This example highlights how regularity is distinct from frequency and why both attributes
matter for traveler wait times and overall service quality.?

DTPM monitors these service attributes using GPS data transmitted from each bus
every 30 seconds. From these data, DTPM reconstructs the realized frequency and realized
headway regularity on each route. For each route, DTPM establishes quality targets for
these two attributes and evaluates compliance within predefined monitoring periods whose
lengths vary by time of day (typically ranging from one to three hours).

Firms incur monetary penalties whenever realized frequency or regularity falls short of
the contracted quality targets in a given monitoring period. These penalties are computed
using formulas written into the contracts and directly reduce firms’ monthly revenues.’
Consequently, the tendering outcomes (per-kilometer bids and fleet size) interact with
operators’” day-to-day choices during the contract. In my structural model in Section 6, I
treat frequency and regularity as firm-specific choice variables shaped by these contractual

instruments.

2Evidence from repeated traveler surveys reinforces this point. Appendix Figure C.4 shows that travelers
consistently assign the lowest grades to frequency and regularity, which suggests that the levels chosen by
operators fall short of user expectations.

3For example, suppose a route has a contractual target of dispatching 15 buses during the morning peak
(3 hours), but the operator dispatches only 13. This shortfall of two buses counts as a deviation from the
frequency target for that route—period. DTPM records these deviations across periods and routes, aggregates
them over time, and deducts the resulting penalties directly from the operator’s monthly payment.
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4 Data

My empirical analysis combines several administrative and survey datasets to study how
transit contract design affects service provision and travel decisions. This section describes

each dataset and how I use it in the analysis.

4.1 Mode and Route Choices

I combine individual travel choices from the 2012-2013 Household Travel Survey with
reconstructed trip attributes based on operational data from the same period. The survey
records all daily trips made by approximately 60,000 individuals across 18,000 randomly
sampled households in the Santiago metropolitan area. The sample is representative at
a fine geographic level across 866 origin—destination zones averaging 1 km? in size. I
restrict attention to the 700 urban zones and apply sample restrictions detailed in Appendix
Appendix A, yielding a final estimation sample of 47,622 trips that covers 80% of work-
related trips and 83% of the city’s residential population.

For each trip, I observe origin and destination coordinates, traveler demographics
(income, car ownership, age, gender, education), and the chosen mode (car, public transit,
walking, or other).

For car trips, I compute monetary costs using fuel prices and maintenance costs
from the Comisién Nacional de Energia de Chile, assuming an average fuel economy of
8.3 km/liter.* Travel times and distances come from the OSRM routing engine, which I
run on OpenStreetMap data using the exact origin—destination coordinates reported in the
survey.

For public transit trips, the survey identifies the exact bus and metro routes used in
each leg but does not report leg-level attributes such as fares, travel times, distances, or
frequencies. To recover these, I use DTPM’s trip reconstruction algorithm developed by
Munizaga and Palma (2012), which combines GPS and smart-card data to infer complete
itineraries, travel times, and service attributes.” Using this algorithm, I merge observed
survey trips with corresponding route-level travel time, distance, and frequency for
representative weeks in 2012 and 2013. I obtain fares separately from administrative fare
tables published by DTPM. In total, I successfully match 23,400 of the 27,000 public transit
trips in the survey to operational data.

4Fuel economy  source: https://energia.gob.cl/sites/default/files/documentos/
20240304_informe_final_estandar_-_vehiculos_medianos_vf.pdf

5The algorithm matches tap-in times with GPS vehicle locations to infer origins, routes, travel times, and
headways. Destinations are imputed based on weekly travel patterns, and the method covers approximately
25 million trips per week.
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Summary Statistics Appendix Tables C.1 and C.2 summarize key features of households,
travelers, trip characteristics, and transit choice sets. For estimation, I restrict attention
to trips made by car, public transit, or walking and bicycling, which together account
for more than 95% of all trips in the survey. Most households fall into low- to middle-
income brackets, and fewer than half own a private vehicle, consistent with the balanced
modal split observed in the data: approximately 39% of trips are by car, 37% by public
transit, and 25% by walking. Trip distances exhibit a bimodal pattern, with short (0-2 km)
and long (>5 km) trips together accounting for more than 75% of all trips. Appendix
Figure C.5 shows that walking dominates short-distance travel, while car use rises sharply
with income even though average travel times remain similar across groups.

Transit choice sets display substantial heterogeneity across origin—destination pairs.
Direct services feature shorter travel and wait times, whereas transfer-based itineraries are
more numerous, more variable, and more likely to involve the subway. During peak hours,
travel times lengthen for both direct and transfer options, while wait times fall modestly
due to higher scheduled frequencies. These patterns align with Appendix Figure C.6,
which documents the trade-off between faster in-vehicle speeds and longer expected wait
times, especially for itineraries requiring a transfer.

Together, the tables and figure highlight the rich heterogeneity in mode availability,
service quality, and route complexity that underlies travelers” mode and route choices in
Santiago.

4.2 Frequency and Headway Regularity Choices

I use GPS data from DTPM covering the entire Transantiago bus network between August
2022 and August 2023. Each vehicle transmits its location every 30 seconds, and the dataset
records the route, operator, vehicle ID, timestamp, and coordinates. These data are used
by DTPM to monitor quality targets and enforce penalties, and they achieve full coverage
across firms, routes, and days with no systematic gaps during the observation window.

I construct the two service attributes that constitute the firm-controlled dimension of
service quality, which given their central role in operational decisions I treat as the primary
choice variables in the structural model in Section 6.

The first attribute is frequency, which measures how many buses a firm dispatches on
a route during a time interval. For comparability across routes and monitoring periods,
I report frequency in buses per hour. The second attribute is regularity, which captures
how consistent the intervals between consecutive buses are. I measure regularity using
the coefficient of variation of headways computed within each monitoring period. The
coefficient of variation equals the standard deviation of headways divided by their mean,
so it scales headway dispersion relative to the typical spacing of buses. This makes the
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regularity measure comparable across routes that operate at different frequencies. A
value of zero indicates perfectly regular service, while larger values represent increasingly
irregular and unreliable service.

Figure 2 shows how these service attributes appear in the GPS data. Each line
corresponds to one bus dispatch and shows the distance traveled over time. The number of
lines between 6am and 7am reflects frequency in that hour, while the variability in spacing
between lines reflects regularity. The trajectories also reveal two operational patterns. First,
even at the start of the route, dispatches are not perfectly evenly spaced, which creates
initial variation in headways. Second, this variation amplifies as buses progress along the
corridor, generating the familiar bus bunching pattern in which small spacing differences
accumulate into clusters of buses followed by long gaps with no service.

For the empirical analysis, I aggregate these measures to the route-day level, excluding
night service (12am-5am) and dispatches flagged by DTPM as exempt from performance
evaluation, yielding a panel of 549,000 route-day observations. In addition to frequency and
regularity, the GPS data provide route-level characteristics that shape operational costs and
performance, including route length, average operating speed, and the bundle to which
each route is assigned. Linking routes to bundles also allows me to construct bundle-level
aggregates such as the number of depots and routes associated with each contract. These
features complement the choice variables and help characterize the supply environment in
which firms operate.

Summary Statistics Appendix Table C.3 summarizes system, bundle, and route level
characteristics using route-day observations from August 2022 and August 2023, which
represent the system’s initial and final equilibrium states.

At the system level, the network comprises roughly 350 routes operated from more than
60 depots. Bundles differ substantially in size and complexity: the number of routes spans
from 11 to 89 and the number of depots ranges from 2 to 19. At the route level, frequency
averages 5.8 buses per hour but ranges from 1 to more than 20, while headway regularity
exhibits meaningful dispersion with coefficients of variation between 0.02 (near-perfect
regularity) and 1.42. Routes are on average 18.5 km long but range from short feeders
of 2-3 km to long trunks exceeding 50 km. Operating speeds average 17.8 km/h, with
congested corridors falling below 5 km/h and faster segments reaching nearly 40 km/h.
This rich variation in length, speed, and service attributes highlights the diverse operating
conditions faced by firms and the differences in route-level cost environments.

Appendix Figure C.7 plots the joint distribution of frequency and regularity across
route-days and highlights the operational trade-offs that motivate the structural model.
Even at relatively low frequencies, many route-days exhibit sizable irregularity, with

coefficients of variation around 0.5. The upward-sloping pattern indicates that higher-
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frequency routes tend to experience greater irregularity, reflecting the difficulty of
maintaining consistent headways as dispatch rates increase. Because frequency and
regularity directly determine traveler wait times and ultimately service quality, DTPM
enforces compliance through quality targets specified in the contract.

4.3 Equilibrium Outcomes: Travel Time, Traffic Flow, and Ridership

First, I measure public transit ridership using smart-card transaction data that record all
system tap-ins. These data provide route-level boardings in 30-minute intervals for every
day in the observation period, covering approximately 3.5 million trips per weekday. I use
these data to examine whether more stringent quality targets increase ridership at the route
level in Section 5.

Second, I use vehicle count data from 64 automatic traffic sensors distributed across
major corridors in Santiago. These sensors record vehicle flows in 15-minute intervals. I
complement these data with travel speed measures from the Google Maps API, matched
to the same locations and timestamps. The traffic flow and speed data span the period
from August 1 to September 17, 2022, and were originally collected by Bordeu (2023) in
collaboration with the Chilean Ministry of Transportation.

Summary Statistics Appendix Table C.3 reports descriptive statistics for transit ridership
at the system, bundle, and route levels. At the system level, daily ridership averages
roughly 1.9 million passengers, reflecting the scale of Santiago’s public transit network.
Bundle-level ridership varies widely, ranging from about 50,000 to more than 550,000
passengers per day, consistent with large differences in bundle size, especially after the
contract reform. Appendix Figure C.8 shows the evolution of these patterns over time:
ridership is unevenly distributed across operators, with a small number of firms accounting
for a large share of total boardings while others operate bundles with substantially lower
demand.

Appendix Figure C.9 summarizes the traffic flow and speed data. Panel (a) maps the
locations of the 64 automatic traffic sensors across major corridors in Santiago, illustrating
broad coverage of the primary arterials used by both cars and buses. Panel (b) plots the
empirical flow—travel time relationship at these locations, revealing the congestion pattern
that underlies the road technology: travel times increase sharply once traffic flows on a
corridor approach its capacity.

I use this combination of traffic flow and speed data to estimate a road technology that
maps vehicle flows to travel times. This relationship allows me to predict how equilibrium
travel speeds adjust when transit service quality or car usage changes endogenously in the
model.
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5 Descriptive Evidence

In late 2022, DTPM implemented a major contract reform as part of its regular renewal
cycle, which affected more than 40 percent of routes.® The reform changed two elements of
contract design. First, quality targets became stricter, as DTPM monitored compliance with
these targets more frequently, increasing the effort transit operators needed to exert to avoid
penalties.” Second, DTPM rebundled routes into a larger number of smaller packages,
altering the share of the network controlled by each transit operator and increasing network
fragmentation across transit operators. Because each treated route entered the renewal
process solely based on its preset contract expiration date, exposure to these changes is
orthogonal to contemporaneous service attributes.

These contract modifications affected firms asymmetrically: some operators lost
most of their routes, others retained a subset, and at least one preserved their full
network. This heterogeneity generates distinct sources of variation that can be used to
examine the effects of contract design on service outcomes. In this section, I present
descriptive evidence along two margins. First, I study how stricter quality targets affected
tirms” provision of frequency and headway regularity, as well as the induced ridership
response. Second, I analyze how network fragmentation—shaped by bundle size and
operator assignment—affects market power and coordination across routes within origin—
destination trips. These reduced-form results provide evidence on the mechanisms through
which contract design influences service quality and welfare, and they motivate the
structural analysis that follows.

5.1 Effect of Quality Targets on Service Attributes

Figure 3 illustrates deviations from planned service attributes in the pre-reform period
(August to December 2022). Firms closely adhered to frequency targets, with bunching
around zero deviation, but systematically deviated from headway regularity targets by
providing more irregular dispatches. This pattern suggests that the monetary penalties for
non-compliance were less costly than achieving stricter regularity, leading firms to tolerate
penalties rather than invest in coordination. To test whether tighter quality targets can shift
this trade-off, I exploit the introduction of more stringent monitoring rules during contract

retendering.

6Transit contracts in Transantiago are medium-term, typically lasting 5-7 years.
"DTIPM standardized monitoring from irregular 2-3 hour intervals to uniform 30-minute windows.
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Empirical Strategy To measure the effect of stricter quality targets on service attribute
outcomes, I estimate the following specification:

log(yrare) = ) By Treated, - L{t =1+ 1} + p, + Mg + 0 + X + €ranr, (4)
1#-1

where v, denotes service outcomes for route r operated by firm k from depot d on
day t. I focus on frequency, headway regularity (coefficient of variation), and passenger
ridership. Treated, is an indicator for routes subject to stricter quality targets. The
specification includes route fixed effects (u,), firm fixed effects (Ay), and date fixed effects
(0¢). Xyt controls for time-varying route characteristics such as distance and planned service
attributes. Standard errors are clustered at the firm level. The sample spans August 2022
to August 2023.

Because treated routes entered the renewal process based on preset contract expiration
dates, exposure to stricter quality targets is orthogonal to contemporaneous service
attributes. The control group consists of routes operated by the only firm that was
entirely unaffected by the contract reform, meaning its quality targets and route bundle
composition remained unchanged. A causal interpretation of the event-study coefficients
requires that, absent the reform, treated and control routes would have followed parallel
trends and that control routes are not affected by the treatment of other routes. However,
the network structure raises the possibility that travelers substitute between nearby routes,
which could induce spillovers and violate SUTVA. To mitigate this concern, I restrict the
control group to routes serving geographically distinct origin—destination (O-D) pairs from
treated routes, limiting the scope for substitution-driven changes in control outcomes.
Appendix Figure C.10 shows that overlap across O-D choice sets is minimal. I compare
treated and untreated routes before and after their respective renewal dates. The staggered
rollout of the reform provides differential timing in treatment and allows the event-study
coefficients B, to summarize how service outcomes evolve around the implementation of

stricter quality targets.

Results Figure 4 and Figure 5 report the event-study estimates. Treated and control routes
exhibit parallel pre-trends, providing suggestive support for the identification assumption.
The dynamic coefficients show that the reform generated heterogeneous responses across
service attributes, consistent with pre-reform compliance patterns. To complement the
event-study evidence, Table 2 reports the corresponding average post-treatment effects
from the static difference-in-differences specification. The two sets of results align closely.
For frequency, stricter quality targets lead to a modest and statistically insignificant
increase of about 2.7 percent, reflecting that operators were already meeting frequency

requirements. In contrast, regularity responds strongly: the coefficient of variation
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of headways declines by roughly 16 percent, indicating a substantial improvement in
dispatching consistency. Finally, ridership increases by about 11 percent on treated routes
relative to controls. The effects on regularity and ridership are statistically significant at
the 5 percent level in both the dynamic and static estimates, emerge immediately after

implementation, and remain stable throughout the post-reform period.

Discussion The results point to a two-step adjustment pattern. Firms respond to stricter
monitoring by improving the attribute where deviations were most frequent: headway
regularity. The sharp decline in headway variation indicates that operators had the capacity
to provide more regular service but lacked incentives to do so under weaker enforcement.
Passengers then respond to the improvement in regularity, as reflected in higher ridership.
The contrast between modest frequency changes and large gains in regularity highlights
a key margin in service provision. Increasing frequency is less coordination-intensive,
while improving regularity requires greater dispatching effort, monitoring, and operational
oversight. That firms adjust along this more demanding margin under stricter targets
suggests that coordination yields meaningful benefits. Quantifying these trade-offs calls
for the structural framework developed below, which evaluates how alternative contract
designs balance the welfare gains from stricter quality targets against the costs of providing

more regular service.

5.2 Effect of Network Fragmentation on Service Attributes

Figure 6 provides a visual example of network fragmentation. When routes that previously
belonged to the same operator are reassigned to different operators, the network becomes
fragmented. This fragmentation can limit the ability of operators to coordinate headways
across routes, potentially worsening regularity and increasing traveler waiting times. To
formally test this hypothesis, I relate variation in market concentration, measured by
the Herfindahl-Hirschman Index (HHI), to observed service attributes in the pre-reform
period.

Empirical Strategy To measure the correlation between network fragmentation and

service attributes, I estimate the following specification:
log (yitoa) = Blog(HHIitoa) + t; + att + ttoq + Xitogy + Eitods (5)

where y;;,; denotes one of three outcomes for trip i between origin o and destination d
on date f: aggregate frequency, the aggregate coefficient of variation of headways, or
expected wait time. HHI;;,; measures network concentration at the trip—OD-date level. The
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specification includes trip fixed effects («i), date fixed effects (a;), and origin—destination
tixed effects (n,4). Xitog controls for planned frequency and the number of routes in the
choice set. Standard errors are clustered at the traveler level.

I restrict attention to the pre-reform period (August to December 2022) to avoid
confounding effects from the change in quality targets implemented at the end of 2022
(see Figures 6¢ and 6d). For each trip in the household travel survey and each day in this
period, I construct a trip-specific route choice set containing all feasible routes and their
observed attributes. I compute route-level market shares using planned frequency (which
is predetermined by contract and not a firm decision) and use these shares to construct the
Herfindahl-Hirschman Index for each trip-OD-date.

Because operators served different route bundles and the composition of these bundles
changed during the period of analysis, the effect of network fragmentation is identified

from variation across days within a market.

Results Table 1 presents the regression estimates. The coefficient of interest, B, is the
elasticity of service outcomes with respect to market concentration. In column (1), a 10%
increase in HHI is associated with a 1.59% reduction in aggregate frequency. In column
(2), the same 10% increase in HHI is associated with a 2.44% reduction in the coefficient
of variation of headways, indicating improved regularity. Finally, in column (3), a 10%
increase in HHI reduces expected waiting time by 0.23%. Taken together, these results
imply that higher market concentration decreases service frequency but improves headway
coordination, with the latter effect dominating to slightly reduce expected wait times on

net. All effects are statistically significant at the 1% level.

Discussion The results highlight two distinct channels through which network fragmen-
tation affects service quality. On the one hand, higher concentration reduces aggregate
service frequency. This suggests that dominant firms may exercise market power by
reducing costly service provision. On the other hand, an increase in concentration lowers
the coefficient of variation of headways. This pattern is consistent with the idea that
fragmented markets suffer from poorer coordination across operators, while concentrated
markets can better schedule departures to avoid bus bunching. Finally, the wait time
reductions suggest that the coordination effect slightly dominates the frequency effect
in terms of passenger outcomes. In other words, the efficiency gains from more regular
headways are just strong enough to offset the loss of frequency. This provides suggestive
evidence that in this setting, coordination externalities are quantitatively important and can
partially mitigate the service quality losses associated with market power. These findings
motivate the counterfactual analysis using a structural model, where I examine how

alternative contractual instruments—such as bundling routes under common operators
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or enforcing stricter quality targets—can influence the balance between market power and
network effects.

6 Empirical Model

The descriptive evidence in Section 5 suggests that quality targets and route bundling
meaningfully shape service provision and traveler responses. It also reveals trade-offs that
reduced-form analysis cannot fully quantify. In particular, how stricter quality targets
and rebundling affect operator costs and revenues, how these policy tools interact in
equilibrium, and how alternative designs shape welfare.

To address these questions, I turn to an empirical model. The model features three
agents: travelers choosing transportation modes and public transit routes; private transit
operators choosing service attributes; and a transit agency setting fares for travelers and
contract terms for operators.

The model characterizes the interaction between travel demand and transit service
provision in a regulated oligopolistic environment. Travelers’ mode and route choices
determine ridership patterns and road congestion, which affect operators’ revenues,
operating costs, and thus service attribute choices. Transit operators” service attribute
choices—particularly frequency and headway regularity—determine wait times, which
affect traveler choices. I estimate the preference and cost parameters that govern
these choices. Using these primitives, I solve for the equilibrium under counterfactual
contract designs and provide direct comparative statics of service quality, ridership, traffic
congestion, and social welfare.

The model assumes that travelers’ origins and destinations are determined ex ante
and examines mode and route choices given these fixed trip patterns. This assumption
is motivated by three considerations. First, for most urban trips, origins and destinations
reflect longer-term residential and employment decisions that respond slowly to trans-
portation policy changes. Second, the contract parameter variation I exploit occurred over
a relatively short time horizon, making it unlikely that fundamental location patterns
adjusted significantly. Third, incorporating joint location-transportation choices would
substantially complicate the empirical analysis given the rich individual-level preference
heterogeneity I incorporate into the model.

This model offers two methodological advantages. First, I estimate cost parameters
from rich operational data on service choices, leveraging quasi-experimental policy
variation for identification. This avoids reliance on prices or auction bids, which are scarce
in regulated settings with medium-term contracts: auctions are infrequent and post-award
prices do not vary. Second, I estimate preference parameters using both mode and route
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choices. This allows me to capture substitution and complementarities across routes, which
is essential for understanding how bundling routes under an operator affects network
performance. The model also treats wait time explicitly, the margin most directly shaped
by operators’ choices and one that the empirical literature has estimated to exceed the value
of in-vehicle travel time.

To guide interpretation, I outline the modeling choices that shape the scope of
the analysis. I focus on a static equilibrium, which is appropriate for studying how
contract design affects service provision and traveler choices in steady state. I take
origins, destinations, and the route network as given, since the goal is to evaluate how
existing routes should be allocated across operators and how their performance should
be monitored, rather than to redesign the network. I model road congestion affecting car
travel times, but I abstract from crowding on transit vehicles, which is more relevant for
peak-load or capacity-planning questions than for contract incentives. Finally, I concentrate
on the three dominant travel modes (car, public transit, walking), abstracting from smaller-

share options such as taxis and ride-sharing.

6.1 Travelers

Travelers make decisions in two sequential stages: first choosing among transportation
modes, then, conditional on selecting public transit, choosing among available routes. This
two-stage structure captures not only substitution among transportation modes but also
substitution among transit routes in response to endogenous service attributes that reflect

transit operators’ responses to contract design.

6.1.1 Stage 1: Mode Choice

For a given origin-destination pair (market m), traveler i’s utility from choosing mode j is

given by:
Uijm = 0ij + Vjm + Xjm + €ijm (6)

where 0;; is a mode-specific random coefficient that varies across individuals, v}, is the
deterministic utility component, x;, represents observable mode-market characteristics,
and €, is an idiosyncratic error term assumed to follow a Type I extreme value
distribution.

The choice set includes three transportation modes: car, public transit, and walking (the
outside option). Mode availability depends on individual circumstances and infrastructure
access. For car availability, the Household Travel Survey data indicates whether individuals

have access to a vehicle. For transit accessibility, I identify all bus stops and subway stations
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within 1,000 meters of both trip origins and destinations, determining the set of transit
routes serving these access points.

The deterministic utility component v, varies by transportation mode:

E max,cr,, Urm, if j = transit
Ojm = veh L
“pricepjm + ayen T lf] = car

jm

For car travel, the deterministic utility depends on trip cost P, and travel time T]anh.
Trip costs include both fuel expenses and maintenance costs.® For public transit, the
deterministic utility equals the expected maximum utility across all available routes R,
in market m, which I discuss in Section 6.1.2, where I provide details of the route choice
model. Walking serves as the outside option with utility normalized to zero, ensuring
model identification and providing a baseline for comparing other transportation modes.

The observable characteristics x,, include three sets of fixed effects interacted with
mode indicators. First, I include mode-specific fixed effects to capture average preferences
across transportation options. Second, I incorporate mode-trip characteristic interactions,
where trip variables include distance, purpose, time period, and indicators for whether
trips originate or terminate in the central business district. Third, I include mode-
demographic interactions with traveler characteristics including education, age, and
gender.

Individual heterogeneity enters through the mode-specific random coefficient 8;;, which
allows baseline preferences for each transportation mode to vary across travelers. This
specification maintains tractability while capturing unobserved preference heterogeneity
that affects mode choice decisions.

Choice Probabilities Given the Type I extreme value distribution assumption for €, the
probability that traveler i chooses mode j in market m follows a standard logit specification:

exp(0;j + Vjm + Xjm)
Ykes, P (Oik + Vkm + Xim)

Pijm =
where [, represents the set of available modes in market m.

6.1.2 Stage 2: Transit Route Choice

The traveler chooses among transit route options h € H,, in market m (origin-destination
pair). Building on the model developed by Kreindler et al. (2023), each option & consists

8Fuel expenses are calculated as the product of distance, fuel efficiency, and gasoline prices. Maintenance
costs are calculated as the product of distance and by per-kilometer maintenance rates
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of either a direct route r or a combination of two routes r; and r, connected through a
transfer. The utility from option / depends on a deterministic component and a random

wait time component:
Uup = oy + “waitT}‘{valt (7)

This model assumes that bus arrivals on route r follow a Poisson process with arrival
rate A,. This generates exponentially distributed wait times with the property that
Pr(T¥t > w) = exp(—A,w). Figure C.11 shows that this distributional assumption is
broadly consistent with the empirical distribution of traveler wait times computed from
GPS-based headway data. The exponential benchmark provides a close approximation,
particularly for routes with higher arrival rates.”

The deterministic utility component v, is given by:

“pricep h T Kyeh T;\[ Eh/ if h = Direct
Uh — h
D‘pricep h T Qveh T;};e

+E maXy, [“Veh T1};eh + Await Tgalt} T H transfer” if h = Transfer

Py is the fare for option h, T,feh is in-vehicle travel time, T,f“ait is wait time governed by
the Poisson arrival process, and p, ... captures the pure disutility of making a transfer.

For direct routes, utility depends on the price, in-vehicle time, and realized wait time for
that route. For transfer options, the traveler experiences utility from the first leg (including
its wait time) plus the expected utility from optimally choosing among available second-leg
routes at the transfer station. This expected utility formulation captures the option value

from having multiple connections available at transfer points.

Transit Choice Set I determine route choice sets using detailed origin-destination
information from the Household Travel Survey combined with complete network topology
data. The choice set H,, for market m includes all direct routes and single-transfer
combinations that connect the accessible origin and destination stations. Choice set sizes
vary substantially across markets, with a median of 8 options, ranging from a minimum of

1 to a maximum of 32 available combinations.

Choice Probabilities The exponential wait time assumption yields tractable expressions

for choice probabilities and expected utility. The probability of choosing option & among

9 As shown in Figure C.11, the exponential distribution fits the observed wait time distribution more closely
for routes with higher service frequencies (larger A,), where random arrival patterns are more likely to emerge.
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alternatives ranked by deterministic utility v1 < v, < --- < g is:

LA . —1 A.
eVt Ni — pUi-10a5p A

A

h
—1 — _a;v;itMi
Ay T, e
i=1

where A; = Z]H:Z- Ajand M; = ZjH:i v;jAj, with vg = —oco by convention.

This framework ensures computational tractability and avoids the Independence of
Irrelevant Alternatives (IIA) property problem that affects standard logit models, as
combining identical routes with split frequencies yields identical choice probabilities and
expected utilities.

Expected Utility The expected utility from choosing optimally among available routes is:

Await
E max uj, = vy — 7 —
hEHm /\h*

where h* denotes the option with highest deterministic utility vy, 77+ is the probability
of choosing option h*, and Ay« is its effective frequency (arrival rate). The influence of
alternative options i # h* on expected utility is captured through the choice probability
mtp«. That is, when more attractive alternatives are available, the probability of choosing

any single option decreases, increasing the expected utility from the entire choice set.

Linking Supply Decisions to Arrival Rates The main departure from Kreindler ef al.
(2023) is connecting service attribute decisions to the effective frequency A, that determines
traveler wait times. Transit operators choose both frequency and headway regularity
(measured by the coefficient of variation of headways) for each route r in their bundle.

I model the relationship between these service attribute decisions and travelers’

experienced effective arrival rates using the following engineering relationship:

- S
1+ CV?

r

where f, is the number of dispatched buses per interval of time and CV; is the coefficient
of variation of headways. When service is perfectly regular (CV, = 0), travelers experience
the full dispatched frequency. As service becomes more irregular, the effective frequency
decreases, reflecting longer average wait times due to service bunching and gaps.

This specification captures an important operational trade-off: operators can increase
service quality either by running more buses (higher frequency) or by improving service
reliability (lower coefficient of variation). The contractual instruments I examine—quality
targets and route bundling—affect operators” incentives along both dimensions.
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6.2 Private Transit Operators

Private transit operators make decisions in two sequential stages: first bidding com-
petitively for bundles of routes in government tenders, then choosing service attributes
(frequency and headway regularity) for each route in their awarded bundle. This two-
stage structure captures the key trade-offs operators face between service quality and
costs, and between regulatory compliance and profit maximization. Crucially, operators
make bundle-level decisions that account for both shared depot resources and demand
spillovers across routes, enabling them to internalize network effects within their bundle

while potentially fragmenting coordination across bundles operated by different firms.

6.2.1 Stage 2: Operations

Each firm k at time t operates a set of routes Ry. Each route r € Ry is assigned to a depot

d(r), which affects its operating costs. The firm’s operational profit is:

Hgf = Z (Revenuert — Penalties,; — Operational Costsrt>, (8)
re€Ry

where Operational Costs,, implicitly depend on d(r). To keep notation concise, I omit
the depot index and maintain the route-time subscript rt throughout the analysis. This
structure captures the central trade-offs between service quality, regulatory compliance,
and cost minimization. I now detail each component of the profit function.

Revenue Firm revenue comes from two sources, a demand-based and a distance-based

component. The demand-based component captures passenger revenue:

pax _ _pax
Ry = py 2 qrt
reRg

where ridership g, depends on both the service attributes of route r and the service
attributes of other routes, capturing demand spillovers within and across route bundles.
The per-passenger price pf* is set by the transit agency.

The distance-based component captures revenue for kilometers of service supplied:

dist _ _dist
RE™ = pe™ ) ful;

reRy

where L is the route service distance. The per-kilometer price p{i*! is determined in the

competitive tender and fixed in the contract. Unlike passenger revenue, this component is
purely mechanical: it scales linearly with service kilometers.
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This dual revenue structure creates incentives for both ridership maximization and

service provision.

Penalties and Quality Targets The transit agency establishes explicit quality targets for
frequency f, and implicit quality targets for service regularity CV, for each route, with

penalties for deviations:

Pl(ft, fr) = max{0; T - (f, — fu)}
PY(ft, fr, CVit, CV,) = max{0; 7% - (Wys — W,)}

where W;; is the realized average wait time and W, is the target wait time. The rela-
tionship between service attribute choices and expected wait time follows the engineering
formula:

1
2frt

This specification captures how both frequency and headway regularity affect passenger

Wyt = o= - (1+CV})

wait times, providing the link between supply-side operational decisions and demand-side

service quality. While ”Prft penalizes undersupply of frequency directly, P¥?it internalizes

rt

the combined effect of frequency and regularity on waiting times.

Operational Costs Transit operations are labor intensive. The cost structure should link
labor inputs to the service attributes chosen by firms. The starting point is the vehicle-hour
requirement implied by a given frequency and route characteristics:
LT
Vehicle-hours,s = fr - —,
Srt
where L] denotes the route distance including deadhead travel from the depot to the route
origin, and s, is the average route speed. LT differs from the service distance L that
generates distance-based revenue, emphasizing the role of depot location in shaping costs.
Labor demand depends on both the scale and the quality of service provision. While
vehicle-hours capture the quantity dimension, regularity requires additional managerial
inputs such as dispatching and monitoring. I represent the production technology for

composite labor demand as:

L
Labor,; = <frt : si) -8(CVy),
r

where 7 is an elasticity mapping vehicle-hours into labor units, and g(CV;;) captures
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the incremental labor effort required to improve headway regularity. I parameterize
g(CVy) = CVrZ‘P with ¢ > 0, so that reducing the coefficient of variation of headways
entails increasing marginal labor demand.

Route-level costs follow directly from multiplying labor demand by the input price. In
addition, I allow for depot-level scale effects. Routes sharing a depot benefit from common
resources such as maintenance facilities, supervisory staff, and spare vehicles. Rather than
modeling depot aggregation explicitly, I incorporate these effects directly into the route-
level specification. Combining the three dimensions quantity, quality, and scale effects

yields:
T

LN -
Crt:wk'(frt'sr) CV - [Raelf - e, ©)
T

where wy is the firm-specific wage rate, | R ;| is the number of routes operated from depot
d, and ¢, captures route-level productivity shocks. A negative p reflects economies of
scale, while a positive p reflects congestion effects. This expression captures the three key

dimensions of operational costs: service quantity, service quality, and scale effects.

Optimality Conditions Transit operators maximize operational profit IT;* by choosing
frequency f;+ and regularity measured by the coefficient of variation of headways CV,;.

The first-order conditions for optimal frequency and regularity are:

9C  pax | 9qn 0ut | | aistys  OPL 0Pyl
— + + 1 LIS,_ o r

TP D DY Tl Bl el T T

0C _ pox | qn 0qu | oPyat

oCV, — Pk oV, T &9V, | T aCVy

These conditions show that optimal service attribute decisions balance marginal costs
against four sources of marginal benefit: direct ridership effects on the route, demand
spillovers to other, distance-based revenue, and the avoidance of regulatory penalties.
The presence of demand spillovers ), ., % illustrates how firms internalize cross-route
demand interactions within their bundle, a key mechanism for evaluating the welfare

effects of bundling.

6.3 Road Technology

I model the road network as a directed graph, similar to Almagro ef al. (2022). Each node
represents a bus stop / and edges connect contiguous bus stops (see Figure C.12). I assume
that car routes are exogenous and travelers take the route suggested by Google Maps. The
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transit network is fixed but travelers choose which route or combination of routes to take,
as explained in Section 6.1.2. A traveler going from bus stop ! to bus stop I’ follows a
directed path over edges that connects | and I'.

During period 7, the total vehicle flow on edge e is:

Ven - ijvenj/ (10)
j

where V,,; is the total number of vehicles of mode j going through e and weights w; capture
the fact that cars and buses may have different effects on congestion. For cars, the number
of vehicles is a function of trips V,yj = }.,c M, Dy where M is the set of all markets in
which travelers take a route that goes through edge e. For buses, the number of vehicles
is a function of frequencies V;,; = ZreR;j frj» where Ri; is the set of bus routes that go
through e.

For road-based modes, the travel time over edge e at period n for mode j is given by:

Tveh — max{ Ty, Aenj - Vo }- (11)

enj

For every pair of neighboring bus stops, there is a range with low vehicle flows for
which the travel time is independent of vehicle flows. Travel time is then equal to an edge-
mode specific free-flow time Teoj that captures road infrastructure and geography (including
distance). The second term inside the maximum represents the range in which travel times
increase with vehicle flows. Over that range, I assume a constant elasticity # of travel times
to vehicle flows. A, is an edge-mode specific scale factor that captures geography and

road infrastructure.

7 Estimation

7.1 Travel Preference Parameters

} for
mode and route choice via Simulated Maximum Likelihood Estimation (MLE). I provide

I estimate the set of travel preference parameters () = {61-]-, Xprices Kvehs Xwaits Piransfer

the estimation details in Appendix B.1.

Identification The identifying variation comes from the rich variation in choice alterna-
tive characteristics and observed choices made by travelers. The cost, in-vehicle travel
time, wait time, and transfer penalty parameters are informed by how differences in these

attributes across choice alternatives affect the relative odds of choosing different modes
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and routes.” With choice sets ranging from 1 to 32 transit route options (median of 8),
there is substantial cross-sectional variation in the attractiveness of transit relative to car
travel and in the composition of available route alternatives.

I include an extensive set of fixed effects and control variables to address potential
sources of bias in preference parameter estimation. The specification includes mode-
specific fixed effects, mode-trip characteristic interactions (including trip distance, purpose,
time period, and central business district (CBD) origin/destination indicators), and mode-
demographic interactions with traveler characteristics including education, age, and
gender. These interactions control for a rich set of time-varying and location-specific

unobservables by travel mode.

Parameter Estimates Table 3 reports the travel preference parameter estimates under four
specifications. Columns (1)—(3) progressively add interactions of mode dummies with trip-
related and demographic characteristics, while column (4) allows for random coefficients
on mode dummies. Across all specifications, the coefficients are stable in magnitude and
highly significant, which suggests that the estimates are not driven by specification choice.

The estimates indicate that commuters place a substantially higher disutility on waiting
relative to in-vehicle travel time. In column (4), the marginal utility of one hour of waiting
time is about 8.4, compared to 4.7 for an hour of travel time. This implies that waiting
is valued at roughly 1.8 times in-vehicle travel, a ratio consistent with the literature and
reinforcing the role of service frequency in determining demand. The implied willingness
to pay for an additional bus per hour, shown in Figure 7a, highlights the steep marginal
value passengers place on frequency improvements.

Cost sensitivity is also precisely estimated, with a marginal utility of -0.42 per dollar.
Combining the time and cost coefficients yields an average value of travel time (VOT)
between $10.9-$11.4 per hour across specifications, in line with benchmarks for urban
commuting contexts. The transfer penalty is around -0.98 in utility units, which translates
into a time-equivalent disutility of about 12-13 minutes of in-vehicle time. This penalty
reflects the inconvenience of making a connection above and beyond the mechanical time
costs of transferring.

Column (4) introduces heterogeneity in preferences for modes, with statistically
significant random coefficient estimates for both car and transit dummies.!! The standard

19The fare structure P, varies across options within markets. While bus-to-bus transfers incur no additional
cost, bus-to-subway transfers require an additional reduced fare, generating price variation that helps identify
travel cost sensitivity.

UEor the specification with random coefficients, since there is no closed form for choice probabilities
when integrating out the random preference distribution, I simulate the choice probabilities using Monte
Carlo integration with a sequence of 100 Halton draws. This simulation approach maintains computational
tractability while allowing for unobserved preference heterogeneity that is essential for welfare analysis.
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deviations are sizeable (0.63 for car, 0.85 for transit), indicating meaningful dispersion in
mode-specific tastes beyond observed demographics or trip features. This heterogeneity
is important when simulating counterfactuals, as it governs substitution patterns in mode
choices.

Taken together, these estimates underscore two main findings. First, wait time carries
a disproportionate weight in commuter utility, which strengthens the rationale for policies
that target service attributes such as frequency or regularity. Second, transfer penalties are
sizeable but not dominant, suggesting that improving network connectivity may generate

meaningful but more modest gains relative to frequency improvements.

7.2 Cost Parameters

I estimate the set of cost parameters ¥ = {v,¢,p} for service attribute choices via
Generalized Method of Moments (GMM). I provide the estimation details in Appendix
B.2.

Identification Estimating the parameters of the route-level cost function in equation (9)
is challenging because the variables of interest are chosen by firms, raising concerns about
endogeneity. I address this using two complementary sources of exogenous variation. First,
the contract reform introduced stricter quality targets for some routes and rebundled these
routes across depots. I exploit this variation to identify the parameters linked to regularity
and depot load. Second, for frequency and route speed, I rely on exogenous shocks or
features of the network design. Below, I discuss the potential sources of bias for each
variable and the instruments or assumptions I use to address them.

Frequency is chosen by operators and may respond to unobserved demand shocks. I
instrument frequency with exogenous operational shocks—such as vehicle breakdowns,
blockages, and other unexpected incidents—that constrain the number of buses that can be
dispatched but are not systematically related to passenger demand.

Headway regularity may be correlated with unobserved productivity or demand
conditions, for example if firms exert greater effort on high-demand routes. To address this
concern, I exploit stricter quality targets introduced only for routes under new contracts,
while old contract routes retained previous standards. This regulatory variation shifts
the cost of achieving regularity but does not directly affect passenger preferences, since
contract terms are not observed by travelers.

Depot load can be endogenous if more routes are allocated to more efficient depots or to
high-demand areas. To address this, I use depot reallocations from the reform’s rebundling
process, focusing on old contract routes that experienced depot changes but unchanged
quality standards. These administrative reallocations altered depot load orthogonally to
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route-specific demand or productivity conditions.

Route speed is an equilibrium outcome: positive demand shocks may increase
congestion and lower speeds. I instrument route speed with free-flow speeds during
off-peak hours, which primarily reflect permanent infrastructure characteristics (e.g., road
capacity, design) rather than contemporaneous demand shocks.

Route distance is determined by network design and depot location and is fixed over

the estimation window, so I treat it as exogenous.

Parameter Estimates Table 4 reports the cost parameter estimates. The base labor
elasticity parameter <y is estimated at 0.643, indicating that labor requirements scale
less than proportionally with vehicle-hours. This relationship suggests the presence of
fixed labor components in transit operations, such as supervisory staff or administrative
overhead that do not increase one-for-one with service frequency. The magnitude implies
that a 10% increase in vehicle-hours translates to approximately a 6.4% increase in labor
requirements.

The quality parameter ¢ is estimated at 1.137, reflecting the additional labor costs
associated with improving headway regularity. Since regularity enters the cost function as
C Vr;,f’t, this positive estimate indicates that reducing the coefficient of variation of headways
(improving service quality) requires substantial additional labor inputs. The magnitude
suggests that transit operators face steep marginal costs when attempting to provide more
regular service, consistent with the intensive monitoring and dispatching efforts required
to maintain schedule adherence.

The depot scale parameter p is estimated at -0.216, confirming the presence of
economies of scale at the depot level. This negative coefficient indicates that routes
sharing a common depot benefit from shared resources such as maintenance facilities,
supervisory staff, and spare vehicles. The magnitude implies that a 10% increase in the
number of routes operated from a depot reduces per-route costs by approximately 2.2%,
demonstrating meaningful but modest scale economies in transit operations.

7.3 Road Technology Parameters

I estimate the congestion elasticity 7 by assuming that a,,; = log A.nj = a; + €.,,j. Under
this assumption, the estimating equation becomes:

log Tev,f]h = aj + 1710g Ven + €enjs (12)

where ; is a mode fixed effect that captures systematic level differences between car and

bus travel times. The remaining error ¢,,; captures unobservable shocks that vary across
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periods of the day within edge e.

Parameter Estimates Table 5 presents the road technology parameter estimates. I find
elasticities of travel time with respect to traffic flows between 0.12 to 0.13, which are
comparable with existing estimates in the literature (Akbar et al., 2023). I also find that
buses systematically move at about 70% of car speed along the same edges, regardless of

congestion.

7.4 Model Fit

Figure 8 evaluates how well the structural model matches key route-level outcomes in
the data. Panel (a) compares predicted and observed ridership and Panel (b) compares
predicted and observed route speeds. Observed values are constructed from smart-card
boardings and GPS-based speed measures aggregated to the route level.

The model reproduces the rank ordering of routes in both dimensions and tracks the
levels reasonably well. For ridership, predicted values explain 56 percent of the cross-
sectional variation. Most routes lie close to the 45-degree line, with larger deviations
concentrated among a small number of high-ridership routes that exhibit considerable
day-to-day variation. This pattern is consistent with the model, which averages over
idiosyncratic daily shocks that affect boarding flows.

Route speeds display greater dispersion in the data, reflecting unobserved operational
conditions such as temporary congestion bottlenecks, traffic incidents, and within-route
heterogeneity in driving behavior. Even so, the model explains 12 percent of the cross-
sectional variation and captures the central tendency of speeds across the network. Routes
that are systematically slower or faster in the data are similarly positioned in the model,
indicating that the congestion technology and route geometry components are reasonably
calibrated.

Overall, the model fits the empirical patterns that are most relevant for the counter-
factual analysis. It captures how demand responds to service attributes, how operational
conditions map into travel speeds, and how these channels combine to generate observed
ridership levels. These diagnostics provide confidence that the structural parameters
governing traveler behavior, operator choices, and road conditions are suitable for welfare

analysis.

8 Counterfactual Simulations

With the structural parameters in hand, I quantify how contract design affects equilibrium

prices, service attributes, travel behavior, and welfare. The counterfactual analysis proceeds
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in two parts. First, I compare the observed allocation to a set of canonical benchmarks: a
welfare-maximizing planner, an unregulated monopoly, and a regulated monopoly. This
exercises the demand, supply, and congestion components of the model and clarifies which
margins—fares, frequency, or regularity—drive welfare losses under imperfect regulation.
Second, I evaluate alternative quality targets by varying the strength of enforcement
through the magnitude of the penalties. Third, I study optimal bundling of routes, which
determines the effective number of competitors in the procurement auction and, therefore,
the extent of market power in contract prices. Taken together, these simulations decompose
the welfare consequences of the reform into (i) fare regulation, (ii) quality targets, and (iii)

route bundling.

8.1 Baseline Contract Design

Table 6 compares the observed equilibrium (column 1) with three counterfactual regimes.
In the baseline, six operators supply bundles of routes under regulated fares and quality
targets. Operators receive a per-kilometer compensation determined in a competitive
auction, a per-passenger compensation determined by the transit agency, and face
monetary penalties for deviations from frequency and CV of headways. Columns 2—4
present counterfactual outcomes under (i) a social planner, (ii) an unregulated monopoly,
and (iii) a regulated monopoly. Government transfers to operators are treated as

redistributions and are therefore excluded from welfare.

Social Planner Relative to the baseline, the planner lowers the bus fare from $0.90 to $0.37
and increases service quality through both higher frequency (+19.5%) and lower dispersion
in headways (—20.0% in the CV). Average wait time falls from 5.30 to 4.15 minutes and
average speeds increase from 19.1 to 22.2 km/h. These adjustments nearly double transit
ridership (from 0.15M to 0.28M trips) and reduce private car trips (from 0.19M to 0.10M).
Welfare increases by $0.55M, primarily due to gains in consumer surplus ($0.33M) and
reductions in environmental externalities ($0.22M). The decline in externalities is driven by
both faster transit speeds and reduced congestion from fewer car trips. Producer surplus
is unchanged up to rounding.

Unregulated Monopoly Absent fare regulation and quality targets, the monopoly raises
the fare to $2.11 and reduces service quality (frequency: —29.3%; CV of headways:
+39.9%), which increases average wait times (to 8.79 minutes) and reduces speeds (to
16.0 km/h). Transit ridership falls sharply (to 0.07M trips) and private car trips increase (to
0.24M). Because travel times are endogenized through congestion, the mode shift toward

driving slows speeds system-wide and raises environmental externalities. Aggregate
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welfare decreases by $0.94M, driven primarily by higher external costs ($0.85M) and a
decline in consumer surplus ($0.10M). In this scenario, market power operates on both
margins—higher fares and degraded service—leading to substantial deadweight loss.

Regulated Monopoly When baseline fares and quality targets are imposed on a monopoly,
the equilibrium allocation remains close to the observed outcome: frequency declines
modestly (—4.9%), while regularity improves with the CV of headways declining by
—8.9%. The small frequency reduction reflects market power in operating decisions:
with no competition for passengers, the monopolist finds it profitable to under-provide
frequency and incur limited penalties. At the same time, unified network control slightly
improves regularity through better coordination across routes. Transit and private car
trips are nearly identical to baseline, and welfare differences are numerically negligible.
The main difference relative to column (1) is fiscal: the monopolist extracts a higher per-
kilometer contract price in the procurement stage, which does not affect total welfare in
the benchmark accounting because transfers are distributional.

Overall, the results highlight the central role of quality regulation. In its absence,
monopoly power generates higher fares, degraded service, congestion, and large external
costs. When fares and quality are regulated, a single supplier replicates the user-side
allocation and exercises market power primarily through fiscal channels rather than

reduced service quality.

8.2 Optimal Quality Targets

The descriptive evidence in Section 5 shows that operators consistently met frequency
targets but often deviated from regularity targets in the pre-reform period. This pattern
suggests that the penalty on frequency deviations was strong enough to induce compliance,
while the penalty associated with wait-time deviations, which internalizes both frequency
and regularity, was too weak to affect dispatching behavior. Taken together, the evidence
indicates that enforcement strength is an important margin through which contract design
affects service quality. In this subsection, I use the structural model to evaluate how
stronger enforcement of the wait-time component of the contract affects operator choices,
travel behavior, and welfare.

The analysis proceeds in two steps. First, I solve the social planner’s problem under the
baseline route bundle design and fare structure. The planner chooses route-level frequency
and regularity to maximize welfare, taking prices and network structure as given. I use
the resulting planner-optimal service attributes as the quality targets in the counterfactual
scenario. These targets reflect the levels of frequency and regularity that would be socially

optimal in the current institutional environment.
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Second, I evaluate the penalty strength needed to induce firms to meet these targets.
To reduce computational burden, and consistent with the descriptive evidence, I treat
the current penalty on frequency deviations as sufficiently calibrated. I then search for
the system-wide wait time penalty 7% that maximizes welfare when firms choose service
attributes in response to the planner’s target levels. All other components of the contract
remain fixed at their baseline values, including fare regulation, route bundling, and the
per-kilometer payments determined in the procurement auctions.

Figure 9 presents the results. The welfare-maximizing wait time penalty is T* = $85 per
minute of deviation from the target wait time. Increasing the strength of this penalty leads
tirms to provide more regular service and slightly higher frequency, which reduces average
wait times, increases transit ridership, and modestly decreases private vehicle trips. These
adjustments generate welfare gains of approximately $0.1 million in the morning peak
period relative to the current equilibrium. The gains arise primarily from reduced waiting
times, with only small changes in external costs.

This exercise shows that stronger enforcement of regularity yields meaningful improve-
ments in service quality and welfare. The frequency penalty already induces compliance,
but the regularity component of the contract remains too weak to align firm behavior with
the socially desired level of headway consistency. Strengthening the wait time penalty
closes a nontrivial portion of the welfare gap between the observed allocation and the
planner’s optimum, without altering fares, network structure, or market power in the

procurement stage.

9 Conclusion

Contract design in public transit must correct two coexisting distortions: market power,
which leads firms to underprovide service quality, and uninternalized network effects,
which fragment coordination across routes. These forces pull in opposite directions,
as competition curbs market power but weakens coordination, making it difficult for
regulators to achieve efficient and reliable service. Because these contracts shape both
welfare and environmental outcomes through their effects on ridership and congestion,
understanding how to balance these distortions is central to effective public transit design.

This paper combines quasi-experimental evidence to document how the contractual
instruments—quality targets and route bundling—interact with these distortions, and a
structural model to quantify their social welfare implications. Linking household travel
surveys, smart-card transactions, and high-frequency GPS data, I use a difference-in-
differences design to show that stricter quality targets improve service quality while
awarding more bundles to independent operators fragments the network and weakens
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coordination. To quantify the welfare implications of these effects and test alternative
contract designs, I estimate a structural model of demand, supply, and congestion that
captures network effects through route complementarities.

In the absence of regulatory intervention, consumer surplus follows an inverted-U
pattern as competition increases: entry initially improves welfare by reducing markups,
but excessive fragmentation erodes coordination, degrading reliability and increasing
congestion. Stricter quality targets help offset these coordination losses by aligning service
decisions more closely with social benefits and pulling externalities toward their efficient
level. These results show that effective contract design must balance competition and
coordination rather than maximizing either in isolation.

A common regulatory approach treats quality standards and market structure as
independent levers, tightening one while holding the other fixed. The results here show
that in network industries, these instruments are interdependent: the degree of route
consolidation determines how effectively quality targets translate into improvements in
service quality and welfare. Because any reform inevitably affects both competition and
coordination, contract design should explicitly integrate these channels. A joint approach,
in which quality incentives are calibrated to the network structure they operate within,
can achieve substantially higher welfare than policies that adjust targets or bundling in
isolation.

This analysis focuses on how contractual instruments shape short-run operational
choices, taking the tendering stage as given. A natural extension would examine
the design of scoring auctions that allocate routes and determine entry, exploring
whether alternative scoring rules or bundling criteria could improve the balance between
competition and coordination. Another important direction is to study how collusion,
contract renegotiation, or dynamic investment decisions in capital such as buses and depots
affect regulatory effectiveness once operations begin. Extending the framework to integrate
procurement and regulation would deepen our understanding of how these stages jointly
shape outcomes in network industries with private provision.

More broadly, the findings illustrate that effective regulation in networked public ser-
vices depends not only on reducing costs or promoting competition, but also on ensuring
that decentralized decisions align with systemwide efficiency. As governments worldwide
restructure transit, electricity, and telecommunications networks, understanding how to
jointly design incentives and market structure becomes essential. Developing empirical
tools to quantify how private incentives diverge from social optima and to inform the

design of regulation where market failures coexist offers a rich agenda for future research.
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Tables and Figures

Table 1: Effect of Network Fragmentation on Service Attributes

Log Frequency Log CV of Headways Log Wait Time

(1) (2) (3)

Log Concentration (HHI) -0.159** -0.244*** -0.023***
(0.009) (0.010) (0.005)
Covariates v v v
Origin-Destination FEs v v v
Date FEs v v v
Trip FEs v v v
Observations 8,061,997 8,061,997 8,061,997
Within R? 0.821 0.617 0.285

Notes: This table reports regression estimates of the relationship between network concentration and service
quality. The unit of observation is a trip—-origin—destination choice set on a given date. Origin-destination
pairs and trip characteristics are derived from the 2012-2013 household travel survey, while service attributes
(frequency, headway regularity, wait times) are constructed from observed transit operations during August
to December 2022. The dependent variables are the log of aggregate frequency, the log of the coefficient of
variation of headways, and the log of expected wait time. The variable of interest is the log of the Herfindahl-

Hirschman Index (HHI), constructed from route-level market shares based on planned frequencies.

regressions control for the total planned frequency and the number of routes in the market. Origin-destination,
date, and trip fixed effects are included, and standard errors are clustered at the traveler level. *** p < 0.01, **

p<005*p<0.1.
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Table 3: Travel Preference Parameters

1) () 3) 4)
Wait time (hr) -8.077%*%*  -8394*** _8368*** -8.356***
(0.139)  (0.148)  (0.149)  (0.148)
Travel time (hr) -4 585***  -4.620*** -4.763*** -4.655***
(0.080) (0.082) (0.084) (0.080)
Cost ($) -0.410%**  -0.412%* -0.416*** -0.424***
(0.015) (0.015) (0.016) (0.015)
Transfer penalty -0.954***  -0.985*** -(0.988*** -0.979***
(0.022) (0.023) (0.023) (0.026)
Random coefficients on mode dummies (c;)
Car 0.628***
(0.068)
Transit 0.848***
(0.090)
Mode FE Yes Yes Yes Yes
Mode x Trip Related FE No Yes Yes Yes
Mode x Demographics FE No No Yes Yes
Log-likelihood -50932.6 -50814.0 -48557.7 -48331.6
Mean VOT ($/hr) 11.2 11.2 11.4 10.9
Observations 49,157 49,157 49,157 49,157

Notes: This table reports travel preference parameter estimation results from the specifications outlined in
The parameters are estimated via
MLE. VOT stands for value of time measure in dollar per hour. Mode-Trip related fixed effects include trip
distance, purpose, time period, and CBD origin/destination indicators. Mode-Demographics fixed effects
include education, age, and gender. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

section 7.1. The estimation sample is based on the full set of trips.
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Table 4: Cost Parameters

D
Base Labor (y)  0.643***

(0.058)
Quality (¢) 1.137%*

(0.015)
Depot scale (p) -0.216***

(0.052)

Observations 152,883

Notes: This table reports GMM estimates of the cost parameters from Equation 9. The parameter 7y governs
how operating costs vary with service frequency, ¢ captures the cost consequences of headway regularity, and
o measures depot-level scale effects. The estimation uses route—day observations and instruments based on
unexpected operational shocks, reform-driven changes in quality targets, and depot reallocations. Standard
errors are clustered at the firm level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 5: Road Technology Parameters

Log Travel Time

1) (2) (3)

Car Constant -0.361***  -0.400*** -0.400***
(0.077) (0.084) (0.084)
Log Traffic Flow 0.130* 0.124*** 0.119**
(0.061) (0.037) (0.036)
Monitoring Station FEs X X
Date FEs X
Observations 70,174 70,174 70,174
Within R? 0.128 0.128

Notes: This table reports regression estimates of the relationship between traffic flow and travel times. The
unit of observation is a traffic monitoring station, measured in 15-minute intervals between 6am and 9pm. The
dependent variable is the log of travel time (in hours) for the corresponding road segment. The independent
variable is the log of vehicle flows, measured in vehicles per hour. The regression is pooled across cars and
buses, with a mode-specific constant capturing systematic differences in travel times between modes. The
sample covers 64 traffic monitoring stations across 9 municipalities and is restricted to cases where flow per
lane is below 1,100 vehicles per hour. This threshold corresponds to the maximum capacity of a lane in urban
areas with intersections and traffic lights and retains 99.4% of the observations. Standard errors are clustered
at the municipality level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6: Counterfactual Results Under Alternative Market Structures and Regulatory
Constraints (Relative to Baseline)

Baseline  Social Planner =~ Monopoly (U) Monopoly (R)

1 2) (©) 4)

Panel A: Prices

Bus Price ($) 0.90 0.37 2.11 0.90

Bus — Metro Transfer Price ($) 0.10 0.13 0.10 0.10
Panel B: Service Attributes

A Frequency (%) 0.00% 19.50% -29.26% -4.88%

A CV of Headways (%) 0.00% -19.96% 39.93% -8.98%

Avg. Wait (min) 5.30 4.15 8.79 5.41

Avg. Speed (km/h) 19.06 22.20 16.01 19.06
Panel C: Trips

Transit (M) 0.15 0.28 0.07 0.15

Private Car (M) 0.19 0.10 0.24 0.19
Panel D: Welfare

A Welfare (M) 0.00 0.54 -0.94 -0.00

A Consumer Surplus (M) 0.00 0.33 -0.10 -0.00

A Producer Surplus (M) 0.00 -0.00 0.00 0.00

A Externalities (M) 0.00 -0.22 0.85 0.00

Notes: Column (1) reports the observed allocation under regulated fares and quality targets with six operators.
Column (2) shows the welfare-maximizing allocation chosen by a social planner. Column (3) corresponds to
an unregulated monopoly that selects fares and service attributes to maximize profits. Column (4) imposes
the same fare regulation and quality targets as in the baseline on a monopolist. A Frequency and A CV of
Headways report percentage changes relative to the baseline. Lower CV of headways values denote more
regular service. Welfare is measured as the sum of consumer surplus, producer surplus, and environmental
externalities, and is normalized to zero in the baseline. Government transfers to operators are treated as
internal redistributions and therefore do not enter the welfare measure. “M” denotes millions.
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(a) Bundle 1 - Subus (c) Bundle 3 — Voy

(d) Bundle 4 — Metbus (e) Bundle 5 — Redbus (f) Bundle 6 — STP

Figure 1: Route Bundles and Depot Locations.

Notes: The figure shows the route bundles operated by each firm in August 2022. A route bundle refers to the
group of routes assigned to a given operator. Colored lines trace the individual routes within each bundle,

and filled circles indicate the depots from which those routes are dispatched and operated.
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Figure 2: GPS-Based Bus Trajectories and Service Attributes.

Notes: The figure plots GPS trajectories for buses operating on one example route over a one-hour period.
Each line corresponds to a single bus dispatch and shows the distance traveled over time. The number of
dispatches within this period reflects the route’s frequency, which I report in buses per hour. The time gap
between consecutive buses is the headway, and the consistency of these intervals determines the regularity of
service. I measure regularity using the coefficient of variation of headways within each monitoring period.
Both frequency and regularity shape traveler wait times and are directly incentivized by the contract’s quality
targets.
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(a) Frequency (b) Headway Regularity

Figure 3: Distribution of Deviations from Planned Service Attributes (Pre-Reform Period).

Notes: This figure shows the distribution of deviations between planned and observed service attributes across
routes during the pre-reform period. The unit of observation is a route, and deviations are constructed
by averaging observed service attributes over all pre-reform operating days. Panel (a) plots deviations in
frequency, defined as planned frequency minus observed frequency. Panel (b) plots deviations in regularity,
defined as observed minus planned headway regularity (measured using the coefficient of variation of
headways). Planned service attributes are obtained from operator quality targets, and observed attributes
are constructed from GPS data. The vertical dashed line at zero represents full adherence to planned service
levels.
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(a) Frequency (b) Headway Regularity

Figure 4: Event-Study Estimates of the Effect of Stricter Quality Targets on Service
Attributes.

Notes: This figure reports event-study estimates of the effect of stricter quality targets on transit service
attributes. Time is measured in months relative to each route’s implementation date, with the month prior
to treatment serving as the omitted category. The unit of observation is a route on a given date, and the
sample is restricted to departures monitored at the start control point. The dependent variables are the
logarithm of observed frequency (Panel a) and the logarithm of the coefficient of variation of headways
(Panel b), both constructed from GPS data from August 2022 to August 2023. Each specification controls for
planned frequency, planned regularity (planned CV), and route distance, and includes route, firm, and date
fixed effects. Points report the estimated event-time coefficients and vertical bars show 95 percent confidence
intervals. Standard errors are clustered at the stable-firm level.

Figure 5: Event-Study Estimates of the Effect of Stricter Quality Targets on Ridership.

Notes: This figure reports event-study estimates of the effect of stricter quality targets on passenger ridership.
Time is measured in months relative to each route’s implementation date, with the month prior to treatment
serving as the omitted category. The unit of observation is a route on a given date. The dependent variable
is the logarithm of total ridership, constructed from smart-card validations between August 2022 and August
2023. The specification controls for planned frequency, planned regularity (planned CV), and route distance,
and includes route, firm, and date fixed effects. Points report the estimated event-time coefficients and vertical

bars show 95 percent confidence intervals. Standard errors are clustered at the stable-firm level.
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(a) Pre-reform Transit Firm Dominance in 2022 (b) Post-reform Transit Firm Dominance in 2023
(6 bundles and 6 firms) (11 bundles and 8 firms)

(c) Pre-Reform Southern Network, August 2022 (d) Pre-Reform Southern Network, December 2022

Figure 6: Transit Network Fragmentation.

Notes: The figures display transit network fragmentation using a hexagonal grid of geographic firm dominance.
Panel (a) shows the network before the contract reform, and Panel (b) shows it after the reform, which both
reallocated routes and introduced stricter quality targets for about 40% of the system. Panels (c) and (d)
instead show a pre-reform rebundling that reallocated some routes without changing quality targets, isolating
the effect of rebundling alone. Panel (c) shows August 2022, when a single firm dominated the south, while
Panel (d) shows December 2022, when two firms shared that area. Each hexagon marks a location where one
firm operates the plurality of routes and has more than 25% local share, with a minimum of three routes.

Colors indicate operators; blank areas have insufficient density or no dominant firm.
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(a) Willingness to Pay for Frequency (b) Marginal Cost of Frequency

Figure 7: Frequency - Demand and Supply

Notes: The figure summarizes how estimated preferences and cost parameters translate into the willingness
to pay (WTP) and marginal cost (MC) of frequency. Panel (a) displays the willingness to pay, computed from
demand-side preference estimates for waiting time, as frequency increases. Routes are grouped by service
regularity: those with low coefficients of variation of headways (regular service), shown in red, and those with
high coefficients of variation (irregular service), shown in blue. Panel (b) shows the marginal cost of frequency,
computed from supply-side cost parameters, as frequency increases. Routes are grouped by depot load: those
operated from depots with fewer than ten routes (low load), shown in green, and those with more than ten
routes (high load), shown in orange.
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(a) Ridership (b) Route Speed

Figure 8: Model Fit

Notes: This figure compares model predictions and observed data on bus operations. Panel (a) compares
model predictions of route-level ridership to observed ridership from the smart-card validation data. Panel
(b) compares model predictions of average route speeds to observed speeds computed from GPS bus location
records. In both panels, observed values are constructed directly from administrative data, while predicted

values are generated by the model described in Section 6 using the parameter estimates from Section 7.
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Figure 9: Optimal Quality Targets: Welfare Effects of the Wait Time Penalty.

Notes: This figure plots the welfare change in the morning peak period relative to the current equilibrium as
a function of the wait time penalty parameter 7. The solid green line reports the welfare difference evaluated
at each penalty level, holding all other components of the contract fixed at their baseline values. Welfare is
computed using the structural model, allowing operator choices of frequency and regularity, traveler route
choices, and congestion effects to adjust to the implied service attributes. The vertical solid line marks the
current penalty level used in the contract. The vertical dashed line marks the welfare-maximizing penalty 7%,
which equals $85 per minute of deviation from the target wait time..
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Appendix A Data Sources

Santiago Household Travel Survey (SHTS) Data

The Santiago Household Travel Survey (SHTS) was designed using the Smith method to
ensure sufficient sample size at the municipality level for estimating trip generation rates,
modal shares, and car ownership rates. Within each municipality, blocks were selected
using probability proportional to size (PPS) sampling with replacement. A minimum of
160 households were surveyed in each municipality, with 100 interviews on weekdays and
60 on weekends.

The final survey sample includes 18,264 households: 11,246 interviewed on weekdays
during the regular season and 7,018 interviewed on weekends across both regular and
summer seasons. Data collection during the regular season took place between July 2012
and November 2013, and during the summer season in January and February of 2013.

Interviews were conducted in person using mobile devices and followed a two-visit
protocol. During the first visit, surveyors introduced the study, collected household char-
acteristics, and assigned a random travel day for each household member. Respondents
received a travel diary to record their trips. In the second visit, surveyors completed in-
person interviews for each member to retrieve trip data; if a respondent was unavailable,
the surveyor returned. This procedure reduces trip underreporting relative to single-visit
or recall-only surveys.

The SHTS provides rich information on individuals (age, gender, number of trips,
driver license, education, occupation, and income), households (georeferenced location,
household size, number of vehicles, tenure, and income), and trips (georeferenced origins
and destinations, purpose, mode, travel time, and time of day).

I restrict the data to the urban area of Santiago, yielding 13,696 households, 31,735
travelers, and 74,166 trips. I then apply the following sample restrictions. I drop trips
using modes other than car, public transit, or walking (15.73%); observations with purposes
outside work, study, or other (0.38%); observations with implausible distances or travel
times (0.43%); trips with missing income (0.44%); and incomplete cases (0.01%). The
resulting sample contains 12,668 households, 27,111 travelers, and 61,574 trips. Considering
weekdays only to focus on regular commuting patterns, the resulting estimation sample
contains 11,612 households, 22,653 travelers, and 47,622 trips.

Monetary costs vary by mode. Walking is costless. Public transit fares are flat for buses
(1.1 USD) and period-dependent for the subway (1.3 USD in peak and 1.2 USD in off-
peak). Transfers are free within 1.5 hours except between bus and subway, which require
a small subway co-payment. High school students travel for free and university students

pay a discounted fare of 0.4 USD. For car users, I compute fuel costs using an average fuel
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consumption of 0.11 liters/km (9 km/liter) from the Ministerio de Energia and a gasoline
price of 1.61 USD/liter.

Appendix B Model Estimation

This appendix provides additional detail on the estimation of the structural model. I begin
by outlining the estimation of traveler preference parameters on the demand side, followed
by the estimation of cost parameters on the supply side. Together, these estimates discipline
the equilibrium outcomes in the model.

Appendix B.1 Travel Preference Parameters

I estimate travel preferences using a two-stage discrete choice model explained in Section
6.1. Travelers first choose a transportation mode (car, public transit, or outside option),
then conditional on choosing transit, they select a specific route. I estimate this model by

Simulated Maximum Likelihood using 100 Halton draws.

Stage 2: Transit Route Choice Consider an origin—destination market m with transit
options h € H,, (direct or single-transfer routes). Each option delivers utility

Up = o + “waitT;‘lNalt/

where v, is the deterministic component and T} ~ Exp(A;) is random waiting time
arising from Poisson arrivals. Following Kreindler et al. (2023), this yields closed-form

route choice probabilities
1t = P(h | transit, m; dyait, A, 0)
and an inclusive value summarizing transit attractiveness:

L, =E . 13
m max iy, (13)

Stage 1: Mode Choice At the mode choice stage, traveler i in market m receives utility

from mode j:
Uijm = 0ij + Vjm + &ijm, (14)

where 0;; ~ N (6;, 0']2) is a random coefficient capturing unobserved preference heterogene-
ity, vj, is the deterministic utility (with Ogansit,n = I from equation (13)), and ¢y, is i.i.d.
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Type I extreme value.
This yields a mixed logit probability, approximated by simulation with R Halton draws:
R u®
1 & exp(Uy,)
R

P(ji | m;) ~ —_—
=1y exp(Ul.(k}L)

(15)

where U(r)

ijm evaluates (14) at draw r.
Likelihood Function The individual contribution to the likelihood combines both stages.

Let j; denote i’s chosen mode and #; the chosen route when j; = transit. Then:

Li = P(ji | m;) x =t (16)

and the log-likelihood is

InL = Z [In P(j; | m;) + 1{j; = transit} In7, | . 17)

Relationship to nested logit. This structure resembles a nested logit but differs in two
ways: (i) route choice probabilities arise from exponential waiting-time shocks rather than
GEV structure, and (ii) the mode choice stage includes random coefficients. Substitution
across routes is governed by ayw.i: and frequency Ay, while cross-mode substitution is
captured by {6}, (7]2-}.

Appendix B.2 Cost Parameters

This subsection provides additional detail on the estimation of the structural cost
parameters. The route-level cost function is derived in Section 6.2. Here, I focus on the
marginal cost expressions, the econometric specification, and the GMM procedure used to

estimate the cost parameters.

Route-Level Cost Function Operational costs on route r, at depot d, for firm k at time ¢
are:
LT v "
Crikt = Wi - <frdkt ' si) CV e [ Rare|” - €rane.s
r

where wy, is the wage rate, 7y governs the elasticity of labor demand with respect to vehicle-
hours, ¢ captures the additional labor effort required to improve regularity, p captures
depot-level scale effects, and ¢,z is a route-level productivity shock.
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Marginal Costs Differentiating the cost function yields the marginal cost of frequency

and regularity:

-1
9C ikt LT\ LT o
o T Jriki Srt 51t v | Rkt |+ €rake

0C gkt

LrT ! (p+1)
Vo, TP — ] -CV ARkt P - €rane,
3TV, (—¢) (frdkt 5rt> ikt | Rakel? - €raxe

Taking logs,

T

L
log(MCSy,) = log(wy) + 7 1og(frart) + 'ylog< > — (¢ +1)1log(CVyaxt) + plog (| Ruxe|) + log(raxt)

-r
Srt

T

L
log(MC/ ) = log(wy) + (7 — 1) log(frare) + vlog( ) — ¢log(CVyakt) + plog(|Ruxe|) + log(eraxt)

-
Srt
Econometric Specification I decompose the shock as

log(eyakt) = ax + By + 11, + Urakes

where ay, B;, and 7, are firm, depot, and route fixed effects, respectively. Substituting into

the log marginal cost expressions yields the estimating equations:

T

L
log(MCfdkt) = (v — 1) log( fraxt) + ’ylog< ) — ¢log(CVigke) + plog (| Rake|) + ax + By + 1, + Urake,

_r
Srt
T

L
log(MCSY,) = v 10g(frake) + 'YIOg( > — (¢ + 1) 10g(CVyar) + plog (| Raxe|) + ax + By + 17, + thrass-

=r
Srt
GMM Estimation Let 6 = (y,¢,p). After estimating and removing the fixed effects, I

obtain residuals ﬁ{ ke and ﬁ%‘,ﬁt, which enter the moment conditions. The GMM estimator

solves
!
. 1 X 1 Y
Omm = arg min [N nzlgn(f’)] w [anlgn(@)] ,

where g,,(0) collects the orthogonality conditions and W is a weighting matrix.
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Moment Conditions and Instruments The moment conditions are

. cv 4 le . 3

E[Z{dkt ' u{dkt] =0, ]E[Zrd‘lﬁt ' u{dkt] =0, IE[Z%G ‘ u{dkt} =0, ]E[Zfdkt'
_ ~ le ~

E|Zly -] =0, E|ZG a5 =0, E|Zg all] =0 E[Z-

I use four sources of exogenous variation:

] =
urdkt] =0,
i =o.

. Z{dkt: disruptions such as burned or hijacked buses, which generate unexpected

variation in realized f,z;.

o Zﬁl‘,ﬁt: changes in monitoring intensity around contract renewal as a shifter of CV, .

o Z5Ue: reallocation of routes across depots following the rebundling reform, which

generates variation in | R ji|-

o Z0u free-flow nighttime speeds as a shifter of s, isolating variation in average

operating speed unrelated to traffic conditions during peak operations.

Together, these instruments generate exogenous variation in cost drivers, allowing me to

trace out the marginal cost responses required to estimate 6 = (1, ¢, p).
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Appendix C Figures and Tables (For Online Publication)

o
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Figure C.1: Geographic distribution of cities adopting competitive tendering for public
transit, by decade.
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Table C.1: Mode Choice Summary Statistics

N Mean SD

Panel A: Household Characteristics

Household size 11,612 3.40 1.56
Vehicle ownership 11,612 0.47 0.50
Household number of vehicles 11,612 0.58 0.73
Income: < USD 10k 11,612 0.31 0.46
Income: [USD 10k, 40k) 11,612 060 0.49
Income: > USD 40k 11,612  0.09 0.28
Panel B: Traveler Characteristics
Age (in years) 22,653 38.39 20.39
Female (= 1) 22,653 0.52  0.50
Education: Less than High School 22,653 0.24 0.42
Education: High School 22,653 043 0.49
Education: Associate degree 22,653  0.09 0.29

Education: College degree or higher 22,653 0.25  0.43
Panel C: Trip Characteristics

Car available (= 1) 47,622 044 0.50
Origin within CBD (= 1) 47,622 031 0.46
Destination within CBD (= 1) 47,622 031 046
Driving (= 1) 47,622 039  0.49
Public Transit (= 1) 47,622 037 048
Walking (= 1) 47,622 025 043
Distance: [0 km, 2 km) 47,622 039 049
Distance: [2 km, 5 km) 47,622 0.23 0.42
Distance: > 5 km 47,622 0.38 0.48
Purpose: Work 47622 0.32 0.47
Purpose: Study 47,622 015 0.36
Purpose: Other 47,622 0.53 0.50

Notes: This table presents summary statistics for transportation mode choice decisions. Sample includes all
observations from the travel preference parameters estimation sample covering the period 2012-2013. All
monetary values are in 2013 USD.
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Figure C.2: Example of a Bus Depot in Santiago’s Public Transit System.

Notes: This photo shows the Rinconada depot, one of the largest operating facilities in Santiago’s public transit
system. Depots serve as the operational base for each firm. They house the fleet, provide charging and
maintenance infrastructure, and include designated parking and dispatch lanes. All buses begin and end
their daily operations at a depot, and depot-route assignments determine the pool of vehicles and personnel
available for each route. Source: ATON.
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Figure C.3: Frequency and Headway Regularity: A One-Hour Illustration.

Notes: This figure illustrates two dispatch patterns between 7am and 8am that operate the same frequency
of four buses per hour but differ in headway regularity. The top schedule has uneven headways of 30, 15,
and 10 minutes, which raises the coefficient of variation of headways to 0.72 and yields an expected wait of
10.4 minutes. The bottom schedule spaces departures evenly every 15 minutes, resulting in a coefficient of
variation of zero and an expected wait of 7.5 minutes. These examples show how irregular headways increase
traveler waiting times even when the number of buses per hour is unchanged. Bus icons represent individual
departures. Expected wait times assume passengers arrive uniformly at random. The coefficient of variation

is computed as the standard deviation of headways divided by their mean.
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Figure C.4: Traveler Evaluations of Service Attributes.

Notes: This figure shows travelers’ average ratings of key bus service attributes from 2015 to 2023, measured
on a 1-7 scale. Respondents evaluated seven dimensions of service quality: coverage, directness, transfer
experience, safety, crowding, headway regularity, and frequency. The figure reports unweighted mean ratings
for each survey wave.

Figure C.5: Variation in Mode Choice Attributes across Income Groups.

Notes: The figure displays variation in mode choice attributes across income groups, showing mode share,
travel time, cost (as a percentage of the hourly wage), and distance for car users and public transit users. The
displayed shares cover only car and public transit, with walking treated as the outside option to bring total
mode shares to 100%.
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Figure C.6: Speed-Wait Time Trade-offs in Route Choice.

Notes: The figure illustrates the speed-frequency trade-off in route choice, plotting frequency-implied wait
times against travel speeds. The scatter plot reveals distinct clusters for different route types: cars, direct

transit routes, and transfer-based transit options. Squared, Triangular and diamond markers indicate mean
values for different route categories.

Table C.2: Route Choice Summary Statistics

Direct Transfer

Mean SD Mean SD

Panel A: Off-peak

Number of options 313 3.07 538 695
At least one option (=1) 083 037 073 045
Subway (= 1) 011 031 043 049
Fare (USD) 1.10 030 1.11 031
Travel time (min) 1297 11.05 19.72 13.21
Wait time (min) 393 1.01 757 146
Panel B: Peak
Number of options 234 247 431 6.06
At least one option (=1) 0.77 042 0.66 047
Subway (= 1) 012 032 046 050
Fare (USD) 1.09 033 115 0.34
Travel time (min) 16.08 13.07 27.06 14.56
Wait time (min) 361 110 7.01 1.61

Notes: This table presents summary statistics for route choice decisions. Sample includes all observations from

travel preference parameters estimation sample covering the period 2012-2013. All monetary values are in 2013
UsD.
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Figure C.7: Frequency and Headway Regularity Choice Patterns.

Notes: The figure shows the distribution of route-day observations according to service frequency and headway
regularity. Frequency is expressed in buses per hour. Regularity is measured with the coefficient of variation

of headways. Color intensity reflects the density of observations in each region of the plot.

Figure C.8: Firm Level Ridership Market Share.

Notes: The figure displays daily ridership trends across transit firms from August 2022 to August 2023, with
each colored area representing a different operator’s passenger volume. The stacked area chart shows bus
system ridership fluctuating between approximately 1.6-2.2 million daily passengers.
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Table C.3: Public Transit Supply Summary Statistics

Mean SD Min Max

Panel A: System-level

Number of Bundles 8.50 2.53 6.00 11.00
Number of Firms 7.00 1.01 6.00 8.00

Number of Depots 65.84 205 62.00 68.00
Number of Routes 354.86 10.86 295.00 363.00

Daily Ridership (millions) 1.86 0.32 0.43 2.21

Panel B: Bundle-level
Number of Depots 8.10 6.03 2.00  19.00
Number of Routes 4175 23.67 11.00  89.00
Daily Ridership (thousands) 218.72 14545 4948 56291

Panel C: Route-level

Frequency (bus/h) 5.82 1.96 1.06 20.27
Headway Regularity (CV) 0.41 0.15 0.02 1.42
Length (km) 18.45  8.58 235 5722
Speed (km/h) 17.83 3.32 1.44 39.29

Daily Ridership (hundreds)  28.52 2472  0.01 170.64

Notes: This table presents summary statistics for public transit supply characteristics across three levels
of aggregation. The sample includes route-day level observations from August 2022 and August 2023 to
capture initial and final equilibrium states, excluding transient periods. Panel A shows system-level statistics
aggregated across all bundles and routes. Panel B presents bundle-level statistics, where bundles represent
groups of routes operated under the same contract. Panel C displays route-level characteristics including
service frequency (buses per hour), headway regularity measured by coefficient of variation (CV), route length,
average speed, and ridership.
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(a) Physical Road Network and Traffic Sensors (b) Traffic Flow vs. Travel Time

Figure C.9: Traffic Flow and Traffic Speed

Notes: Panel (a) displays the physical road network, with street centerlines in black and traffic sensors in red
that record vehicle flows every 15 minutes. Panel (b) illustrates the traffic flow-travel time relationship. The
gray points represent individual observations, while the purple line shows the binned averages.
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(a) Treated vs Control Routes (b) Share of O-D pairs by treatment group

Figure C.10: Quality Targets Treatment Assignment and Overlap in Transit Travel Options.

Notes: The figure shows the spatial distribution of treated and control transit routes and the composition of
origin—destination (O-D) pairs across treatment groups. Panel (a) displays the route network, where treated
routes are shown in green and control routes are shown in blue. Panel (b) shows the share of O-D pairs whose
available transit options include only treated routes, only control routes, or a mix of both. The sample of O-D
pairs is restricted to those that include at least one treated or control route as the first leg of a feasible transit

option; O-D pairs served only by routes outside these groups are excluded.
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(a) Frequency = 5 bus/h

(b) Frequency = 10 bus/h

(c) Frequency = 15 bus/h

Figure C.11: Wait Time Distribution by Service Frequency Level.

Notes: The figure shows the empirical distribution of traveler wait times for a representative bus route operating
at a given frequency. Panel (a) corresponds to a route with 5 buses per hour, Panel (b) to a route with 10 buses
per hour, and Panel (c) to a route with 15 buses per hour. Bars show the empirical distribution of passenger
wait times computed from GPS-based headway data, while the dashed line depicts the exponential distribution
predicted under a Poisson bus arrival process with rate parameter A equal to the observed average service
frequency.
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— Edges e Nodes

Figure C.12: Topological Representation of the Road Network in Santiago, Chile.

Notes: This figure shows the topological representation of Santiago’s road network, where bus stations serve as
nodes (light blue) and edges (gray) represent the fictitious connections between adjacent stations in the graph.
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